In the war, the intelligence about the enemy is very important. Now, our troop has mastered the situation of the enemy's war zones, and known that these war zones can communicate to each other directly or indirectly through the network. We also know the enemy is going to build a new communication line to strengthen their communication network. Our task is to destroy their communication network, so that some of their war zones can't communicate. Each line has its "cost of destroy". If we want to destroy a line, we must spend the "cost of destroy" of this line. We want to finish this task using the least cost, but our enemy is very clever. Now, we know the network they have already built, but we know nothing about the new line which our enemy is going to build. In this condition, your task is to find the minimum cost that no matter where our enemy builds the new line, you can destroy it using the fixed money. Please give the minimum cost. For efficiency, we can only destroy one communication line.

Input

The input contains several cases. For each cases, the first line contains two positive integers n, m (1<=n<=10000, 0<=m<=100000) standing for the number of the enemy's war zones (numbered from 1 to n), and the number of lines that our enemy has already build. Then m lines follow. For each line there are three positive integer a, b, c (1<=a, b<=n, 1<=c<=100000), meaning between war zone A and war zone B there is a communication line with the "cost of destroy " c.

Output

For each case, if the task can be finished output the minimum cost, or output ‐1.

Sample Input

3 2
1 2 1
2 3 2
4 3
1 2 1
1 3 2
1 4 3

Sample Output

-1
3

题意: 敌人在N个点间建了M条线路,每条线路都有一个权值,敌人要再建一条线路,己方可以毁掉敌方的一条线路,问己方最少要花多少钱(至少得准备多少钱)才能使

这些点不连通。

解析: 先分离出每个双连通分量(删除双联通分量中的任何一条边还是连通的,没有意义),给每个分量重新编一个号,缩成一个点,在Tarjan算法过程中把桥保存下来。

选一条权值最小的桥,分别从两头出发,找次小的桥。答案就是次小的桥的权值,为甚么是找次小的桥,因为如果敌人是把最小的桥所连的两个连通分量再加一条边,则

必须删次小的桥,如果是其他,则只需要删最小的桥即可。

代码

#include<cstdio>
#include<cstring>
#include<string>
#include<iostream>
#include<sstream>
#include<algorithm>
#include<utility>
#include<vector>
#include<set>
#include<map>
#include<queue>
#include<cmath>
#include<iterator>
#include<stack>
using namespace std;
typedef __int64 LL;
const int INF=1e9+;
const double eps=1e-;
const int maxn=;
const int maxm=;
int N,M,eid,id,top;
int scc_id,scc[maxn],dfn[maxn],low[maxn],b[maxn],fa[maxn];
int head[maxn],KK[maxn];
struct edge
{
int v,w,next;
edge(int v=,int w=,int next=-):v(v),w(w),next(next){}
}E[*maxm];
struct node
{
int u,v,w;
node(int u=,int v=,int w=):u(u),v(v),w(w){}
};
vector<node> V;
void init()
{
eid=id=top=scc_id=;
for(int i=;i<=N;i++)
{
head[i]=-;
dfn[i]=low[i]=b[i]=scc[i]=;
fa[i]=i;
}
V.clear();
}
void AddEdge(int u,int v,int w)
{
E[++eid]=edge(v,w,head[u]);
head[u]=eid;
}
void Tarjan(int u)
{
dfn[u]=low[u]=++id;
KK[top++]=u;
bool first=false;
for(int i=head[u];i!=-;i=E[i].next)
{
edge& e=E[i];
int v=e.v,w=e.w;
if(v==fa[u]&&!first){ first=true; continue; }
if(!dfn[v])
{
fa[v]=u;
Tarjan(v);
low[u]=min(low[u],low[v]);
if(low[v]>dfn[u]) V.push_back(node(u,v,w));//这条边是桥
}
else low[u]=min(low[u],dfn[v]);
}
int t;
if(dfn[u]==low[u])
{
scc_id++; //双连通分量
do
{
t=KK[--top];
b[t]=scc_id; //连通分量编号
}while(u!=t);
}
return;
}
int ans;
int FindPath(int u,int pre)
{
int Min=INF,MMin=INF;
for(int i=head[u];i!=-;i=E[i].next)
{
int v=E[i].v,w=E[i].w;
if(v==pre) continue;
int t=FindPath(v,u);
if(t<MMin) MMin=t;
if(w<MMin) MMin=w;
if(Min>MMin) swap(Min,MMin);
}
ans=min(ans,MMin);
return Min;
}
int main()
{
while(scanf("%d%d",&N,&M)!=EOF)
{
init();
int u,v,w;
for(int i=;i<=M;i++)
{
scanf("%d%d%d",&u,&v,&w);
AddEdge(u,v,w); //建边
AddEdge(v,u,w); //反向边
}
for(int i=;i<=N;i++) if(!dfn[i]) Tarjan(i); //找连通分量 int mindist=INF,picku,pickv,Size=V.size();
eid=;
memset(head,-,sizeof(head));
for(int i=;i<Size;i++) //重新建图
{
node& t=V[i];
int u=t.u,v=t.v,w=t.w;
AddEdge(b[u],b[v],w);
AddEdge(b[v],b[u],w);
if(w<mindist){ mindist=w,picku=b[u],pickv=b[v]; } //权值最小的桥
}
ans=INF;
FindPath(picku,pickv);
FindPath(pickv,picku);
if(ans==INF) printf("-1\n");
else printf("%d\n",ans);
}
return ;
}

Hdu4005-The war(双连通缩点)的更多相关文章

  1. HDU 4005 The war(双连通好题)

    HDU 4005 The war pid=4005" target="_blank" style="">题目链接 题意:给一个连通的无向图.每条 ...

  2. hdu 4612 Warm up 双连通缩点+树的直径

    首先双连通缩点建立新图(顺带求原图的总的桥数,事实上因为原图是一个强连通图,所以桥就等于缩点后的边) 此时得到的图类似树结构,对于新图求一次直径,也就是最长链. 我们新建的边就一定是连接这条最长链的首 ...

  3. 边双连通缩点+树dp 2015 ACM Arabella Collegiate Programming Contest的Gym - 100676H

    http://codeforces.com/gym/100676/attachments 题目大意: 有n个城市,有m条路,每条路都有边长,如果某几个城市的路能组成一个环,那么在环中的这些城市就有传送 ...

  4. POJ 3177 Redundant Paths (边双连通+缩点)

    <题目链接> <转载于 >>>  > 题目大意: 有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新 ...

  5. UVA 10972 RevolC FaeLoN(边-双连通+缩点)

    很好的一道图论题,整整撸了一上午... 题意是给定一个无向图,要求将所有边变为有向边,求最少加入多少条有向边,使得该图强连通?这里先假设一个问题:给定一个无向子图,该子图具有怎样的性质才能使得将其无向 ...

  6. POJ - 3177 Redundant Paths (边双连通缩点)

    题意:在一张图中最少可以添加几条边,使其中任意两点间都有两条不重复的路径(路径中任意一条边都不同). 分析:问题就是最少添加几条边,使其成为边双连通图.可以先将图中所有边双连通分量缩点,之后得到的就是 ...

  7. poj 3352 Road Construction【边双连通求最少加多少条边使图双连通&&缩点】

    Road Construction Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10141   Accepted: 503 ...

  8. HDU 4005 The war 双连通分量 缩点

    题意: 有一个边带权的无向图,敌人可以任意在图中加一条边,然后你可以选择删除任意一条边使得图不连通,费用为被删除的边的权值. 求敌人在最优的情况下,使图不连通的最小费用. 分析: 首先求出边双连通分量 ...

  9. UVA-10972 RevolC FaeLoN (边双连通+缩点)

    题目大意:将n个点,m条边的无向图变成强连通图,最少需要加几条有向边. 题目分析:所谓强连通,就是无向图中任意两点可互达.找出所有的边连通分量,每一个边连通分量都是强连通的,那么缩点得到bcc图,只需 ...

随机推荐

  1. mysql 1449 : The user specified as a definer (&#39;root&#39;@&#39;%&#39;) does not exist 解决方法

    权限问题,授权 给 root  全部sql 权限 mysql> grant all privileges on *.* to root@"%" identified by & ...

  2. SRM 588 D2 L3:GameInDarknessDiv2,DFS

    题目来源:http://community.topcoder.com/stat?c=problem_statement&pm=12710 采用DFS搜索,第一次写的时候忘了加访问标志,结果状态 ...

  3. Class的生命周期

    之前的<JVM类载入机制-ClassLoader>和<初探JVM-ClassLoader源代码>,仅仅是讨论了Class的载入部分,如今来纵观一下整个Class的生命周期. C ...

  4. 使用PHPExcel导入导出excel格式文件

    使用PHPExcel导入导出excel格式文件  作者:zccst  因为导出使用较多,以下是导出实现过程.  第一步,将PHPExcel的源码拷贝到项目的lib下  文件包含:PHPExcel.ph ...

  5. Android无法导入下载好的项目(和Eclipse中已经存在的项目命名一样导致冲突)解决办法

    错误提示: 在我们到导入从网络下载的项目时,经常会出现如下问题(选择的项目变灰,并且提示要选择至少一个项目): 错误原因: 出现这样的错误主要是因为你的Eclipse已经存在了和上图中New Proj ...

  6. 在用EF新增对象存贮至数据库时汪报错,但数据库里没有新增数据

    大致的问题是这样的: 原来一直用存贮数据的方法是用的是:DBContext.AddToXXXX(),这个方法.在写代码的时候看到VS提示这个方法已失效,推荐使用DBContext.XXXX.AddOb ...

  7. 【Solr初探】Solr安装,启动,查询,索引

    1. 安装&启动 官网:http://lucene.apache.org/solr/ 下载源代码,解压,进入根目录(我把solr放在/usr/local/solr下) 在/usr/local/ ...

  8. nodejs 简单http 文件上传demo

    // 这是一个简单的Node HTTP,能处理当前目录的文件 // 并能实现良种特殊的URL用于测试 // 用http://localhost:8000 或http://127.0.0.1:8000 ...

  9. OpenGL ES 2.0 向量

    访问向量中的某个分量<向量名>.<分量名> 将一个向量看作位置时,可以使用x.y.z.w4个分量名,其分别代表X轴.Y轴.Z轴.向量的模. 将一个向量看作颜色时,可以使用r.g ...

  10. MySQL指令记录(Wampserve环境)

    1.MySQL在Wampserve中的默认用户名为'root',默认密码为空: 2.显示所有数据库 show databases; 3.切换数据库 use DATABASE_NAME; 4.列出所有表 ...