2739: 最远点

Time Limit: 20 Sec  Memory Limit: 256 MB

Description
给你一个N个点的凸多边形,求离每一个点最远的点。 Input
本题有多组数据,第一行一个数T,表示数据组数。
每组数据第一行一个数N,表示凸多边形点的个数,接下来N对数,依次表示1~N这N个点的坐标,按照逆时针给出。 Output
对于每组数据输出N个数,第i个数表示离第i个点最远的点的编号,如果有多个最远点,输出编号最小的。 Sample Input
1
4
0 0
1 0
1 1
0 1 Sample Output
3
4
1
2 HINT
数据规模和约定
坐标的绝对值在1e9以内;
任意点对距离数值的平方不会超过long long;
令S为每组数据凸多边形点数之和;
对于20%的数据,S<=2000;
对于50%的数据,S<=50000;
对于100%的数据,S<=500000;
数据有梯度。

算法讨论:

直接决策单调性,至于怎么证,因为这是个凸包。然后为什么决策点在[i, i + n]范围内是正贡献,在这个之处要取反比较,

看了下面这个图你就明白了,为了保证决策单调。

代码:

#include <cstdlib>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#define stop system("pause")
using namespace std;
typedef long long ll;
const int N = 500000 + 5; int n;
int f[N];
struct Point {
int x, y, id;
}a[N << 1]; ll sqr(int x) { return 1LL * x * x; }
bool check(int i, int j, int k) {
ll x = 1LL * sqr(a[i].x - a[j].x) + 1LL * sqr(a[i].y - a[j].y);
ll y = 1LL * sqr(a[i].x - a[k].x) + 1LL * sqr(a[i].y - a[k].y);
if(j < i || j > i + n) x = -x;
if(k < i || k > i + n) y = -y;
return x == y ? (a[j].id > a[k].id) : (x < y);
} void solve(int l, int r, int dl, int dr) {
if(l > r) return;
int mid = l + (r - l) / 2;
int dmid = dl;
for(int i = dl; i <= dr; ++ i)
if(check(mid, dmid, i)) dmid = i;
f[mid] = a[dmid].id;
solve(l, mid - 1, dl, dmid);
solve(mid + 1, r, dmid, dr);
} #define stone_ int main() {
#ifndef stone_
freopen("nt2012_dis.in", "r", stdin);
freopen("nt2012_dis.out", "w", stdout);
#endif int T;
scanf("%d", &T);
while(T --) {
scanf("%d", &n);
for(int i = 1; i <= n; ++ i) {
scanf("%d%d", &a[i].x, &a[i].y);
a[i].id = i; a[i + n] = a[i];
}
solve(1, n, 1, n << 1);
for(int i = 1; i <= n; ++ i)
printf("%d\n", f[i]);
//puts("");
} #ifndef stone_
fclose(stdin); fclose(stdout);
#endif
return 0;
}

BZOJ2739 最远点(分治 + 决策单调性)的更多相关文章

  1. 2019.02.21 bzoj2739: 最远点(决策单调性+分治)

    传送门 题意简述:给一个N个点的凸多边形,求离每一个点最远的点. 思路:先根据初中数学知识证明决策是满足单调性的,然后上分治优化即可. 才不是因为博主懒得写二分+栈优化呢 代码: #include&l ...

  2. [BZOJ2739]最远点(DP+分治+决策单调性)

    根据旋转卡壳,当逆时针遍历点时,相应的最远点也逆时针转动,满足决策单调性.于是倍长成链,分治优化DP即可,复杂度O(n^2). #include<cstdio> #include<a ...

  3. CF868F Yet Another Minimization Problem 分治决策单调性优化DP

    题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$ ...

  4. bzoj2216: [Poi2011]Lightning Conductor(分治决策单调性优化)

    每个pi要求 这个只需要正反DP(?)一次就行了,可以发现这个是有决策单调性的,用分治优化 #include<iostream> #include<cstring> #incl ...

  5. 决策单调性&wqs二分

    其实是一个还算 trivial 的知识点吧--早在 2019 年我就接触过了,然鹅当时由于没认真学并没有把自己学懂,故今复学之( 1. 决策单调性 引入:在求解 DP 问题的过程中我们常常遇到这样的问 ...

  6. bzoj 2739 最远点——分治处理决策单调性

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2739 分治处理决策单调性的思想就是先找到一个询问,枚举所有可能的转移找到它的决策点,那么这个 ...

  7. CodeForces 868F Yet Another Minimization Problem(决策单调性优化 + 分治)

    题意 给定一个序列 \(\{a_1, a_2, \cdots, a_n\}\),要把它分成恰好 \(k\) 个连续子序列. 每个连续子序列的费用是其中相同元素的对数,求所有划分中的费用之和的最小值. ...

  8. P2877 [USACO07JAN]牛校Cow School(01分数规划+决策单调性分治)

    P2877 [USACO07JAN]牛校Cow School 01分数规划是啥(转) 决策单调性分治,可以解决(不限于)一些你知道要用斜率优化却不会写的问题 怎么证明?可以暴力打表 我们用$ask(l ...

  9. 洛谷CF868F Yet Another Minimization Problem(动态规划,决策单调性,分治)

    洛谷题目传送门 貌似做所有的DP题都要先搞出暴力式子,再往正解上靠... 设\(f_{i,j}\)为前\(i\)个数分\(j\)段的最小花费,\(w_{l,r}\)为\([l,r]\)全在一段的费用. ...

随机推荐

  1. 读书笔记_Effective_C++_条款二十三:宁以non-member、non-friend替换member函数

    有下面一种情况 class A { private: int a; int b; public: A(int x, int y) :a(x), b(y){} void a_display(){ cou ...

  2. jquery实现复选框全选反选

    实现原理: 给所有的复选框取相同的名字,当点击全选的时候把chenked属性全部设置为true;当点击全不选的时候把checked属性设置为false; 源代码如下: html代码: <form ...

  3. js和jquery中的触发事件

    改别人的坑,遇到jquery选择器和fireEvent混用,不认识fireEvent方法报错. js的方法不能使用jquery的选择器去调用. 1.fireEvent (IE上的js方法 ) 我们来看 ...

  4. PHP获取图片颜色值,检测图片主要颜色的代码:

    <?php $i=imagecreatefromjpeg("photo3.jpg");//测试图片,自己定义一个,注意路径 for ($x=0;$x<imagesx($ ...

  5. 利用redis协助mysql数据库搬迁

    最近公司新项目上线,需要数据库搬迁,但新版本和老版本数据库差距比较大,关系也比较复杂.如果用传统办法,需要撰写很多mysql脚本,工程量虽然不大,但对于没有dba的公司来说,稍微有点难度.本人就勉为其 ...

  6. xml文件操作

    public static XmlDocument getDoc(String path)//加载xml文档 { XmlDocument doc = new XmlDocument(); doc.Lo ...

  7. android slidingview

    http://blog.csdn.net/sky181772733/article/details/6969810 http://blog.csdn.net/ithomer/article/detai ...

  8. Codeforces 437E The Child and Polygon

    http://codeforces.com/problemset/problem/437/E 题意:求一个多边形划分成三角形的方案数 思路:区间dp,每次转移只从一个方向转移(L,R连线的某一侧),能 ...

  9. java比较相等符

    public class Test1 { /** * @param args */ public static void main(String[] args){ int a = 1000, b = ...

  10. hdu1796:容斥入门题

    简单的容斥入门题.. 容斥基本的公式早就知道了,但是一直不会写. 下午看到艾神在群里说的“会枚举二进制数就会容斥”,后来发现还真是这样.. 然后直接贴代码了 #include <iostream ...