给定两个点p1与p2的坐标,确定这两点所构成的直线,要求对于输入的任意点p3,都可以判断它是否在该直线上。初中解析几何知识告诉我们,判断一个点在直线上,只需其与直线上任意两点点斜率都相同即可。实际操作当中,往往会先根据已知的两点算出直线的表达式(点斜式、截距式等等),然后通过向量计算即可方便地判断p3是否在该直线上。

生产实践中的数据往往会有一定的偏差。例如我们知道两个变量X与Y之间呈线性关系,Y=aX+b,我们想确定参数a与b的具体值。通过实验,可以得到一组X与Y的测试值。虽然理论上两个未知数的方程只需要两组值即可确认,但由于系统误差的原因,任意取两点算出的a与b的值都不尽相同。我们希望的是,最后计算得出的理论模型与测试值的误差最小。大学的高等数学课程中,详细阐述了最小二乘法的思想。通过计算最小均方差关于参数a、b的偏导数为零时的值。事实上,在很多情况下,最小二乘法都是线性回归的代名词。

遗憾的是,最小二乘法只适合与误差较小的情况。试想一下这种情况,假使需要从一个噪音较大的数据集中提取模型(比方说只有20%的数据时符合模型的)时,最小二乘法就显得力不从心了。例如下图,肉眼可以很轻易地看出一条直线(模式),但算法却找错了。

RANSAC算法的输入是一组观测数据(往往含有较大的噪声或无效点),一个用于解释观测数据的参数化模型以及一些可信的参数。RANSAC通过反复选择数据中的一组随机子集来达成目标。被选取的子集被假设为局内点,并用下述方法进行验证:

  1. 有一个模型适应于假设的局内点,即所有的未知参数都能从假设的局内点计算得出。
  2. 用1中得到的模型去测试所有的其它数据,如果某个点适用于估计的模型,认为它也是局内点。
  3. 如果有足够多的点被归类为假设的局内点,那么估计的模型就足够合理。
  4. 然后,用所有假设的局内点去重新估计模型(譬如使用最小二乘法),因为它仅仅被初始的假设局内点估计过。
  5. 最后,通过估计局内点与模型的错误率来评估模型。

上述过程被重复执行固定的次数,每次产生的模型要么因为局内点太少而被舍弃,要么因为比现有的模型更好而被选用。

整个过程可参考下图:

关于算法的源代码,Ziv Yaniv曾经写一个不错的C++版本,我在关键处增补了注释:

#include <math.h>
#include "LineParamEstimator.h" LineParamEstimator::LineParamEstimator(double delta) : m_deltaSquared(delta*delta) {}
/*****************************************************************************/
/*
* Compute the line parameters [n_x,n_y,a_x,a_y]
* 通过输入的两点来确定所在直线,采用法线向量的方式来表示,以兼容平行或垂直的情况
* 其中n_x,n_y为归一化后,与原点构成的法线向量,a_x,a_y为直线上任意一点
*/
void LineParamEstimator::estimate(std::vector<Point2D *> &data, std::vector<double> &parameters)
{
parameters.clear();
if(data.size()<2)
return;
double nx = data[1]->y - data[0]->y;
double ny = data[0]->x - data[1]->x;// 原始直线的斜率为K,则法线的斜率为-1/k
double norm = sqrt(nx*nx + ny*ny); parameters.push_back(nx/norm);
parameters.push_back(ny/norm);
parameters.push_back(data[0]->x);
parameters.push_back(data[0]->y);
}
/*****************************************************************************/
/*
* Compute the line parameters [n_x,n_y,a_x,a_y]
* 使用最小二乘法,从输入点中拟合出确定直线模型的所需参量
*/
void LineParamEstimator::leastSquaresEstimate(std::vector<Point2D *> &data,
std::vector<double> &parameters)
{
double meanX, meanY, nx, ny, norm;
double covMat11, covMat12, covMat21, covMat22; // The entries of the symmetric covarinace matrix
int i, dataSize = data.size(); parameters.clear();
if(data.size()<2)
return; meanX = meanY = 0.0;
covMat11 = covMat12 = covMat21 = covMat22 = 0;
for(i=0; i<dataSize; i++) {
meanX +=data[i]->x;
meanY +=data[i]->y; covMat11 +=data[i]->x * data[i]->x;
covMat12 +=data[i]->x * data[i]->y;
covMat22 +=data[i]->y * data[i]->y;
} meanX/=dataSize;
meanY/=dataSize; covMat11 -= dataSize*meanX*meanX;
covMat12 -= dataSize*meanX*meanY;
covMat22 -= dataSize*meanY*meanY;
covMat21 = covMat12; if(covMat11<1e-12) {
nx = 1.0;
ny = 0.0;
}
else { //lamda1 is the largest eigen-value of the covariance matrix
//and is used to compute the eigne-vector corresponding to the smallest
//eigenvalue, which isn't computed explicitly.
double lamda1 = (covMat11 + covMat22 + sqrt((covMat11-covMat22)*(covMat11-covMat22) + 4*covMat12*covMat12)) / 2.0;
nx = -covMat12;
ny = lamda1 - covMat22;
norm = sqrt(nx*nx + ny*ny);
nx/=norm;
ny/=norm;
}
parameters.push_back(nx);
parameters.push_back(ny);
parameters.push_back(meanX);
parameters.push_back(meanY);
}
/*****************************************************************************/
/*
* Given the line parameters [n_x,n_y,a_x,a_y] check if
* [n_x, n_y] dot [data.x-a_x, data.y-a_y] < m_delta
* 通过与已知法线的点乘结果,确定待测点与已知直线的匹配程度;结果越小则越符合,为
* 零则表明点在直线上
*/
bool LineParamEstimator::agree(std::vector<double> &parameters, Point2D &data)
{
double signedDistance = parameters[0]*(data.x-parameters[2]) + parameters[1]*(data.y-parameters[3]);
return ((signedDistance*signedDistance) < m_deltaSquared);
}

RANSAC寻找匹配的代码如下:

/*****************************************************************************/
template<class T, class S>
double Ransac<T,S>::compute(std::vector<S> &parameters,
ParameterEsitmator<T,S> *paramEstimator ,
std::vector<T> &data,
int numForEstimate)
{
std::vector<T *> leastSquaresEstimateData;
int numDataObjects = data.size();
int numVotesForBest = -1;
int *arr = new int[numForEstimate];// numForEstimate表示拟合模型所需要的最少点数,对本例的直线来说,该值为2
short *curVotes = new short[numDataObjects]; //one if data[i] agrees with the current model, otherwise zero
short *bestVotes = new short[numDataObjects]; //one if data[i] agrees with the best model, otherwise zero //there are less data objects than the minimum required for an exact fit
if(numDataObjects < numForEstimate)
return 0;
// 计算所有可能的直线,寻找其中误差最小的解。对于100点的直线拟合来说,大约需要100*99*0.5=4950次运算,复杂度无疑是庞大的。一般采用随机选取子集的方式。
computeAllChoices(paramEstimator,data,numForEstimate,
bestVotes, curVotes, numVotesForBest, 0, data.size(), numForEstimate, 0, arr); //compute the least squares estimate using the largest sub set
for(int j=0; j<numDataObjects; j++) {
if(bestVotes[j])
leastSquaresEstimateData.push_back(&(data[j]));
}
// 对局内点再次用最小二乘法拟合出模型
paramEstimator->leastSquaresEstimate(leastSquaresEstimateData,parameters); delete [] arr;
delete [] bestVotes;
delete [] curVotes; return (double)leastSquaresEstimateData.size()/(double)numDataObjects;
}

在模型确定以及最大迭代次数允许的情况下,RANSAC总是能找到最优解。经过我的实验,对于包含80%误差的数据集,RANSAC的效果远优于直接的最小二乘法。

RANSAC可以用于哪些场景呢?最著名的莫过于图片的拼接技术。优于镜头的限制,往往需要多张照片才能拍下那种巨幅的风景。在多幅图像合成时,事先会在待合成的图片中提取一些关键的特征点。计算机视觉的研究表明,不同视角下物体往往可以通过一个透视矩(3X3或2X2)阵的变换而得到。RANSAC被用于拟合这个模型的参数(矩阵各行列的值),由此便可识别出不同照片中的同一物体。可参考下图:





另外,RANSAC还可以用于图像搜索时的纠错与物体识别定位。下图中,有几条直线是SIFT匹配算法的误判,RANSAC有效地将其识别,并将正确的模型(书本)用线框标注出来:

From:http://grunt1223.iteye.com/blog/961063

RANSAC算法详解的更多相关文章

  1. BM算法  Boyer-Moore高质量实现代码详解与算法详解

    Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:h ...

  2. kmp算法详解

    转自:http://blog.csdn.net/ddupd/article/details/19899263 KMP算法详解 KMP算法简介: KMP算法是一种高效的字符串匹配算法,关于字符串匹配最简 ...

  3. 机器学习经典算法详解及Python实现--基于SMO的SVM分类器

    原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector  ...

  4. [转] KMP算法详解

    转载自:http://www.matrix67.com/blog/archives/115 KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段.    我们这里说的K ...

  5. 【转】AC算法详解

    原文转自:http://blog.csdn.net/joylnwang/article/details/6793192 AC算法是Alfred V.Aho(<编译原理>(龙书)的作者),和 ...

  6. KMP算法详解(转自中学生OI写的。。ORZ!)

    KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法.KMP算法是拿来处理字符串匹配的.换句 ...

  7. EM算法详解

    EM算法详解 1 极大似然估计 假设有如图1的X所示的抽取的n个学生某门课程的成绩,又知学生的成绩符合高斯分布f(x|μ,σ2),求学生的成绩最符合哪种高斯分布,即μ和σ2最优值是什么? 图1 学生成 ...

  8. Tarjan算法详解

    Tarjan算法详解 今天偶然发现了这个算法,看了好久,终于明白了一些表层的知识....在这里和大家分享一下... Tarjan算法是一个求解极大强联通子图的算法,相信这些东西大家都在网络上百度过了, ...

  9. 安全体系(二)——RSA算法详解

    本文主要讲述RSA算法使用的基本数学知识.秘钥的计算过程以及加密和解密的过程. 安全体系(零)—— 加解密算法.消息摘要.消息认证技术.数字签名与公钥证书 安全体系(一)—— DES算法详解 1.概述 ...

随机推荐

  1. UGUI实现的虚拟摇杆,可改变摇杆位置

    实现方式主要参考这篇文章:http://www.cnblogs.com/plateFace/p/4687896.html. 主要代码如下: using UnityEngine; using Syste ...

  2. 6个理由告诉你为什么要用NAS

    当电脑硬盘容量满了,多数使用者第一个想法就是买一块几TB的硬盘来扩充,如果是笔电的使用者,第一个想到的是买一个外接式硬盘来备份资料,这样的想法并没有错,那是当你还不知道有「NAS」这个好用的东西,才会 ...

  3. Maximum Subarray (JAVA)

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  4. VS2003,安装程序检测到另一个程序…

    昨天在安装Visual Studio .Net 2003时,出现一个对话框   "安装程序检测到另一个程序要求计算机重新启动.必须重新启动计算机后才能安装visual studio.net系 ...

  5. MVC和传统的以模板为中心的web架构比较

    特性 以模板为中心 MVC架构 页面产生方式 运行并替换标签中的语句 由模板引擎生产HTML页面 路径解析 映射到文件系统路径,也可以通过rewrite等技术来重定向 由控制器定义,并可以通过路由系统 ...

  6. WEB标准:标准定义、好处、名词解释、常用术语、命名习惯、浏览器兼容、代码书写规范

    1. WEB标准是什么? “WEB标准”是一系列标准的总称.一般的误区经常把WEB标准说成DIV+CSS.准确的说法应该是:采用W3C推荐的WEB标准中的XHTML1.1结合CSS2.0 样式表制作页 ...

  7. Ubuntu Server 安装部署 Cacti 服务器监控

    本文的英文版本链接是 http://xuri.me/2013/10/20/install-the-cacti-server-monitor-on-ubuntu-server.html Cacti是一套 ...

  8. yii2不用composer使用redis

    1.下载redis https://github.com/yiisoft/yii2-redis 2.下载解压放到 basic\vendor\yiisoft\yii2-redis 3.编辑文件: bas ...

  9. 流程控制 - PHP手册笔记

    脚本由语句构成,语句靠流程控制实现功能,这一节主要介绍了几个关键字的使用. elseif elseif和else if的行为完全一样,如果用冒号来定义if/elseif条件,那就不能用两个单词的els ...

  10. JSON.parse()和JSON.stringify()的用法

    JSON.parse()是用于从一个字符串中解析出json对象,如下所示 var str = '{"name":"flsummer","age&quo ...