题目大意:
  一个$n(n\le2\times10^5)$个结点的树,每个结点有一个权值$w_i$。可以任选一点为根,并选择一些结点交换其子结点的顺序,使得该树DFS序上第$m$个结点的权值最大。求最大权值。

思路:
  二分答案$k$ ,树形DP检验可行性。
  对于以结点$x$为根的子树,用$f[x]$表示$x$的子树经过任意变换的所有DFS序中,满足$w_i\ge k$的最长前缀长度。
  若$w_x<k$,则$f[x]$显然为$0$。
  若$w_x\ge k$,则对于$x$的每个子结点$y$,若$f[y]=size[y]$,将$y$的子树插入到$x$子树DFS序的最前面仍然是合法的;而对于所有满足$f[y]<size[y]$的子结点$y$,可以选择一个$f[y]$最大的加入。考虑以$x$为根的情况,则只需要在$f[x]$上加上满足$f[y]<size[y]$的$f[y]$第二大的$f[y]$。此时不需要考虑加上的会是$x$上方的点,因为加上$x$上方的点的情况肯定能在$x$上方的点处统计到。
  时间复杂度$O(n)$。

 #include<cstdio>
#include<cctype>
#include<algorithm>
#include<forward_list>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int N=2e5+;
int w[N],f[N],k,size[N],ans,root;
std::forward_list<int> e[N];
inline void add_edge(const int &u,const int &v) {
e[u].push_front(v);
e[v].push_front(u);
}
void dfs(const int &x,const int &par) {
f[x]=size[x]=;
int max1=,max2=;
for(register auto &y:e[x]) {
if(y==par) continue;
dfs(y,x);
size[x]+=size[y];
if(f[y]==size[y]) {
f[x]+=f[y];
} else {
if(f[y]>max1) std::swap(f[y],max1);
if(f[y]>max2) std::swap(f[y],max2);
}
}
f[x]=w[x]<k?:f[x]+max1;
ans=std::max(ans,f[x]+max2);
}
inline int calc() {
dfs(root,ans=);
return ans;
}
int main() {
const int n=getint(),m=getint();
for(register int i=;i<=n;i++) w[i]=getint();
for(register int i=;i<n;i++) {
add_edge(getint(),getint());
}
root=std::min_element(&w[],&w[n]+)-w;
int l=*std::min_element(&w[],&w[n]+);
int r=*std::max_element(&w[],&w[n]+);
while(l<=r) {
k=(l+r)>>;
if(calc()>=m) {
l=k+;
} else {
r=k-;
}
}
printf("%d\n",l-);
return ;
}

[CF627D]Preorder Test的更多相关文章

  1. [LeetCode] Verify Preorder Serialization of a Binary Tree 验证二叉树的先序序列化

    One way to serialize a binary tree is to use pre-oder traversal. When we encounter a non-null node, ...

  2. [LeetCode] Verify Preorder Sequence in Binary Search Tree 验证二叉搜索树的先序序列

    Given an array of numbers, verify whether it is the correct preorder traversal sequence of a binary ...

  3. [LeetCode] Binary Tree Preorder Traversal 二叉树的先序遍历

    Given a binary tree, return the preorder traversal of its nodes' values. For example:Given binary tr ...

  4. [LeetCode] Construct Binary Tree from Preorder and Inorder Traversal 由先序和中序遍历建立二叉树

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  5. 【LeetCode】Verify Preorder Serialization of a Binary Tree(331)

    1. Description One way to serialize a binary tree is to use pre-order traversal. When we encounter a ...

  6. Leetcode 255. Verify Preorder Sequence in Binary Search Tree

    验证一个list是不是一个BST的preorder traversal sequence. Given an array of numbers, verify whether it is the co ...

  7. LeetCode Verify Preorder Sequence in Binary Search Tree

    原题链接在这里:https://leetcode.com/problems/verify-preorder-sequence-in-binary-search-tree/ 题目: Given an a ...

  8. 【LeetCode OJ】Construct Binary Tree from Preorder and Inorder Traversal

    Problem Link: https://oj.leetcode.com/problems/construct-binary-tree-from-preorder-and-inorder-trave ...

  9. Binary Tree Preorder Traversal

    Given a binary tree, return the preorder traversal of its nodes' values. For example:Given binary tr ...

随机推荐

  1. cloudera manager 5.3完整卸载脚本

    service cloudera-scm-agent stop service cloudera-scm-agent stop umount /var/run/cloudera-scm-agent/p ...

  2. PHP文件操作函数一

    <?php/*Created on 2013-6-26*///判断文件的类型echo filetype("array.php")."<br />&quo ...

  3. BZOJ 2063: 我爸是李刚

    2063: 我爸是李刚 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 155  Solved: 82[Submit][Status][Discuss] ...

  4. 【bzoj4310/hdu5030-跳蚤】后缀数组

    我真的是..调了一百年.. 傻逼的人生.. 而且这题好像可以用sam做哎!我Y出了一个奇怪的办法.. 好吧sam是不能做这题的.搞错了. 说说后缀数组好了.. 搞后缀数组 然后我们要二分一个子串,判断 ...

  5. 【FJWC2017】交错和查询 [线段树]

    交错和查询 Time Limit: 10 Sec  Memory Limit: 256 MB Description 无限循环数字串S由长度为n的循环节s构成.设s为12345(n=5),则数字串S为 ...

  6. NPOI的使用Excel模板导出 可插入到指定行

    Excel模版建议把需要添加数据行的样式设置好 模版样式,导出后效果 [2017-11-22 对获取需插入数据的首行样式有时为空报错修改] /// <summary> /// 根据模版导出 ...

  7. Codeforces Round #475 Div. 2 A B C D

    A - Splits 题意 将一个正整数拆分成若干个正整数的和,从大到小排下来,与第一个数字相同的数字的个数为这个拆分的权重. 问\(n\)的所有拆分的不同权重可能个数. 思路 全拆成1,然后每次将2 ...

  8. Python学习笔记 - day6 - 函数

    函数 函数在编程语言中就是完成特定功能的一个词句组(代码块),这组语句可以作为一个单位使用,并且给它取一个名字.可以通过函数名在程序的不同地方多次执行(这叫函数的调用).函数在编程语言中有基本分为:预 ...

  9. android usb adb流程[转]

    android adb 概述 android adb的代码分为两部分: kernel层的代码在如下路径: drivers/usb/gadget/f_adb.c drivers/usb/gadget/a ...

  10. python基础===python3中 http.client 和 urllib的那些事

    import http.client #python3中没有了 httplib的库 #python 3.x中urllib库和urilib2库合并成了urllib库.. #其中urllib2.urlop ...