[九省联考2018]林克卡特树(DP+wqs二分)
对于k=0和k=1的点,可以直接求树的直径。
然后对于60分,有一个重要的转化:就是求在树中找出k+1条点不相交的链后的最大连续边权和。
这个DP就好。$O(nk^2)$
然后我们完全不可以想到,将best[k](选择k条链的答案)打表输出,更不可能然后作差分,发现得到的数组是递减的。
这说明:best[k]是一个上凸包。
于是我们可以二分一个斜率去切这个凸包(类似导数),根据切点横坐标与k的大小旋转直线(改变斜率)。
考虑给你一个直线斜率k,怎么找到它和凸包的切点。实际上就相当于将这个凸函数减去y=kx,再求凸包最高点。
感性理解一下,就是相当于在凸包下面画一条直线,然后旋转整个坐标系使这条直线就是x轴,然后正确性就比较显然了。
现在问题就是,如何找到最高点,这成了一个最优性问题,DP方程里可以去掉一维(已选链数不需要记录了)。
这样就可以通过了,复杂度$O(kn\log n)$。这又叫WQS二分。
https://www.luogu.org/problemnew/solution/P4383
https://blog.csdn.net/izumi_hanako/article/details/80071419
#include<cstdio>
#include<cstring>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
typedef long long ll;
using namespace std; const int N=;
int n,k,u,v,w,cnt,to[N<<],nxt[N<<],val[N<<],h[N];
ll mid,tot;
void add(int u,int v,int w){ to[++cnt]=v; val[cnt]=w; nxt[cnt]=h[u]; h[u]=cnt; }
struct P{
ll x,y;
bool operator < (const P &b) const {return x==b.x? y>b.y : x<b.x;}
P operator + (const P &b) const {return (P){x+b.x,y+b.y};}
P operator + (int b) {return (P){x+b,y};}
}dp[][N];
P upd(P a){ return (P){a.x-mid,a.y+}; } void dfs(int u,int fa){
dp[][u]=max(dp[][u],(P){-mid,});
for (int i=h[u],v; i; i=nxt[i])
if ((v=to[i])!=fa){
dfs(v,u);
dp[][u]=max(dp[][u]+dp[][v],upd(dp[][u]+dp[][v]+val[i]));
dp[][u]=max(dp[][u]+dp[][v],dp[][u]+dp[][v]+val[i]);
dp[][u]=dp[][u]+dp[][v];
}
dp[][u]=max(dp[][u],max(upd(dp[][u]),dp[][u]));
} int main(){
freopen("lct.in","r",stdin);
freopen("lct.out","w",stdout);
scanf("%d%d",&n,&k); k++;
rep(i,,n) scanf("%d%d%d",&u,&v,&w),tot+=abs(w),add(u,v,w),add(v,u,w);
ll L=-tot,R=tot;
while (L<=R){
mid=(L+R)>>; memset(dp,,sizeof(dp)); dfs(,);
if (dp[][].y<=k) R=mid-; else L=mid+;
}
memset(dp,,sizeof(dp)); mid=L; dfs(,); printf("%lld\n",L*k+dp[][].x);
return ;
}
[九省联考2018]林克卡特树(DP+wqs二分)的更多相关文章
- [八省联考2018]林克卡特树lct——WQS二分
[八省联考2018]林克卡特树lct 一看这种题就不是lct... 除了直径好拿分,别的都难做. 所以必须转化 突破口在于:连“0”边 对于k=0,我们求直径 k=1,对于(p,q)一定是从p出发,走 ...
- [BZOJ 5252][LOJ 2478][九省联考2018] 林克卡特树
[BZOJ 5252][LOJ 2478][九省联考2018] 林克卡特树 题意 给定一个 \(n\) 个点边带权的无根树, 要求切断其中恰好 \(k\) 条边再连 \(k\) 条边权为 \(0\) ...
- luogu P4383 [九省联考2018]林克卡特树lct
传送门 题目操作有点奇怪,不过可以发现这就是把树先变成\(k+1\)个连通块,然后每个连通块选一条路径(本题中一个点也是一条路径),然后依次接起来.所以实际上要求的是选出\(k+1\)条点不相交的路径 ...
- luogu4383 [八省联考2018]林克卡特树(带权二分+dp)
link 题目大意:给定你 n 个点的一棵树 (边有边权,边权有正负) 你需要移除 k 条边,并连接 k 条权值为 0 的边,使得连接之后树的直径最大 题解: 根据 [POI2015]MOD 那道题, ...
- LuoguP4383 [八省联考2018]林克卡特树lct
LuoguP4383 [八省联考2018]林克卡特树lct https://www.luogu.org/problemnew/show/P4383 分析: 题意等价于选择\(K\)条点不相交的链,使得 ...
- luoguP4383 [八省联考2018]林克卡特树(树上dp,wqs二分)
luoguP4383 [八省联考2018]林克卡特树(树上dp,wqs二分) Luogu 题解时间 $ k $ 条边权为 $ 0 $ 的边. 是的,边权为零. 转化成选正好 $ k+1 $ 条链. $ ...
- P4383 [八省联考2018]林克卡特树 树形dp Wqs二分
LINK:林克卡特树 作为树形dp 这道题已经属于不容易的级别了. 套上了Wqs二分 (反而更简单了 大雾 容易想到还是对树进行联通情况的dp 然后最后结果总和为各个联通块内的直径. \(f_{i,j ...
- 洛谷P4383 [八省联考2018]林克卡特树lct(DP凸优化/wqs二分)
题目描述 小L 最近沉迷于塞尔达传说:荒野之息(The Legend of Zelda: Breath of The Wild)无法自拔,他尤其喜欢游戏中的迷你挑战. 游戏中有一个叫做“LCT” 的挑 ...
- BZOJ5252 八省联考2018林克卡特树(动态规划+wqs二分)
假设已经linkcut完了树,答案显然是树的直径.那么考虑这条直径在原树中是怎样的.容易想到其是由原树中恰好k+1条点不相交的链(包括单个点)拼接而成的.因为这样的链显然可以通过linkcut拼接起来 ...
随机推荐
- Maven如何打包本地依赖包
有的jar包,在maven中心库里面是没有的,那么,如何在项目中使用呢? 假设我们需要使用:apache-ant-zip-2.3.jar 将该jar包,放在项目的lib目录,例如: 在pom.xml里 ...
- BZOJ1051:受欢迎的牛(并查集 / Tarjan)
1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 8161 Solved: 4460 Description ...
- 使用MAT分析内存泄露
使用MAT分析内存泄露 对于大型服务端应用程序来说,有些内存泄露问题很难在测试阶段发现,此时就需要分析JVM Heap Dump文件来找出问题.随着单机内存越来越大,应用heap也开得越来越大,动辄十 ...
- 打砖块(codevs 1257)
题目描述 Description 在一个凹槽中放置了n层砖块,最上面的一层有n块砖,第二层有n-1块,……最下面一层仅有一块砖.第i层的砖块从左至右编号为1,2,……i,第i层的第j块砖有一个价值a[ ...
- HDU1878 欧拉回路---(并查集+图论性质)
http://acm.hdu.edu.cn/showproblem.php?pid=1878 欧拉回路 Time Limit: 2000/1000 MS (Java/Others) Memory ...
- 优化IDEA启动速度,快了好多。后面有什么优化点,会继续往里面添加
1.优化启动 修改bin/idea.exe.vmoptions文件如下: -Xms256m 初始堆大小-Xmx384m 最大堆大小 -XX:+UseParNewGC 使用并行收集算法 2. ...
- [bzoj2049][Sdoi2008]Cave 洞穴勘测——lct
Brief Description 给定一个森林,您需要支持两种操作: 链接两个节点. 断开两个节点之间的链接. Algorithm Design 对于树上的操作,我们现在已经有了树链剖分可以处理这些 ...
- bzoj 3196二逼平衡树 线段树套平衡树
比较裸的树套树,对于区间K值bz上有一道裸题,详见题解http://www.cnblogs.com/BLADEVIL/p/3455336.html(其实题解也不是很详细) //By BLADEVIL ...
- Mac git
多次提交代码,与合并的工作量成反比. in terminal window git status:查看git的状态 git add -A: 把所有不再track里的文件加入进去/ git add -u ...
- SELinux 案例 2
普通进程权限白名单 sepolicy generate --application [-n NAME] [-u USER ]command [-w WRITE_PATH ]