设答案为$f_s$,它的生成函数为$\begin{align*}F(x)=\sum\limits_{i=0}^\infty f_ix^i\end{align*}$,则我们有$\begin{align*}F(x)=x+\sum\limits_{k\in D}F^k(x)\end{align*}$(枚举儿子数量$k$,计数$k$个儿子的权值组合起来的方案,再加上单点成树的情况),移项得到$\begin{align*}F(x)-\sum\limits_{k\in D}F^k(x)=x\end{align*}$,再设$\begin{align*}G(x)=x-\sum\limits_{k\in D}x^k\end{align*}$,则$G(F(x))=x$,也就是说它们互为反函数

现在问题转化为:我们已经知道了$G(x)$,要求$F(x)$使得$G(F(x))=x$,也就是求$G$的复合逆,我们可以用拉格朗日反演求出$F$

拉格朗日反演:若$g(f(x))=x$,则$[x^n]f(x)=\dfrac1n[x^{-1}]\dfrac1{g^n(x)}$,实际使用更多用$\dfrac1n[x^{n-1}]\left(\dfrac x{g(x)}\right)^n$

证明(思路来自zjt的博客被zjt钦点比较靠谱的博客,这里的证明并不严谨):

$g(f(x))=x\Rightarrow f(g(x))=x$,记$f(x)=\sum\limits_{i=0}^\infty a_ix^i$

$\begin{align*}f(g(x))&=x\\\sum\limits_{i=0}^\infty a_ig^i(x)&=x\\\sum\limits_{i=1}^\infty ia_ig^{i-1}(x)g'(x)&=1\\\sum\limits_{i=1}^\infty ia_ig^{i-1-n}(x)g'(x)&=\dfrac1{g^n(x)}\\ [x^{-1}]\left(na_n\dfrac{g'(x)}{g(x)}+\sum\limits_{\substack{i\geq1\\i\ne n}}ia_i\dfrac1{i-n}\left(g^{i-n}(x)\right)'\right)&=[x^{-1}]\dfrac1{g^n(x)}\end{align*}$

因为幂级数求导之后不会出现$x^{-1}$的项,所以sigma后面全是$0$,即$\begin{align*}[x^{-1}]na_n\dfrac{g'(x)}{g(x)}=[x^{-1}]\dfrac1{g^n(x)}\end{align*}$

设$\begin{align*}g(x)=\sum\limits_{i=1}^\infty b_ix^i\end{align*},z=\sum\limits_{i=1}^\infty\frac{b_{i+1}}{b_1}x^i$(为了方便求复合逆,我们需要硬点$g$没有常数项)

$\begin{align*}\dfrac{g'(x)}{g(x)}&=\dfrac{\sum\limits_{i=1}^\infty ib_ix^{i-1}}{\sum\limits_{i=1}^\infty b_ix^i}\\&=\dfrac{\sum\limits_{i=1}^\infty ib_ix^{i-1}}{b_1x}\dfrac1{1+z}\\&=\left(x^{-1}+\sum\limits_{i=2}^\infty\dfrac{ib_ix^{i-2}}{b_1}\right)\sum\limits_{i=0}^\infty(-1)^iz^i\end{align*}$

左边的sigma全是次数大于$-1$的项,右边的sigma包含一个$1$,其他都是次数大于$-1$的项,所以$[x^{-1}]\dfrac{g'(x)}{g(x)}=1$,从这里也可以看出我们要限制$g$的一次项不为$0$才能方便地求出复合逆

最后我们得到$na_n=[x^{-1}]\dfrac1{g^n(x)}$,即$a_n=\dfrac1n[x^{-1}]\dfrac1{g^n(x)}$

有了这个定理,我们可以用多项式求逆+快速幂在$O(n\log_2^2n)$的时间内求出$f_n$

这个时间复杂度是不是不太优秀啊==其实我们还有更优秀的方法

对于一个多项式$A(x)$,我们要求$B=A^k$,能把指数拿下来的运算就只有对数了,所以我们有$\ln B=k\ln A$,再求个指数,我们就得到了$B$,也就是$B=e^{k\ln A}$

为求多项式exp,我们需要一个前置技能:多项式的牛顿迭代

已知$g(x)$,要求$f(x)$使得$g(f(x))=0$

倍增,假设已经求出$g(f_0(x))\equiv0(\text{mod }x^{\frac n2})$,我们要求$g(f(x))\equiv0(\text{mod }x^n)$,我们可以把$g(f(x))$在$f_0(x)$处泰勒展开,即$\begin{align*}g(f(x))&=\sum\limits_{i=0}^\infty\dfrac{g^{(i)}(f_0(x))}{i!}(f(x)-f_0(x))^i\end{align*}$

注意到从$f_0(x)$变化到$f(x)$,我们加入次数$\geq\dfrac n2$的项不会改变模$x^{\frac n2}$为$0$这个性质,还可以调整在模$x^n$意义下的值,所以我们可以找到一个$f(x)$使得它的前$\dfrac n2$项系数和$f_0(x)$一样,也就是$f(x)-f_0(x)\equiv0(\text{mod }x^{\frac n2})$,这导致$(f(x)-f_0(x))^i(i\geq2)$在模$x^n$意义下都为$0$,所以$g(f(x))\equiv g(f_0(x))+g'(f_0(x))(f(x)-f_0(x))(\text{mod }x^n)$,即$f(x)\equiv f_0(x)-\dfrac{g(f(x))}{g'(f(x))}(\text{mod }x^n)$

这个式子本身没有太大用处,但我们来看看当$g(x)$变成具体的东西时这个式子会带来什么神奇的效应

多项式exp:已知$f(x)$,要求$g(x)=e^{f(x)}$

上式即$\ln g(x)-f(x)=0$,令$h(g(x))=\ln g(x)-f(x)$,我们要找到一个$g(x)$使$h(g(x))=0$

套用牛顿迭代的式子,用倍增求$g$,$g(x)=g_0(x)-\dfrac{h(g_0(x))}{h'(g_0(x))}$,因为$h(g(x))=\ln g(x)-f(x),h'(g(x))=\dfrac1{g(x)}$,所以$g(x)=g_0(x)-g_0(x)(\ln g_0(x)-f(x))=g_0(x)(1-\ln g_0(x)+f(x))$,于是每次多项式求对数和FFT即可,时间复杂度还是$O(n\log_2n)$

于是我们就可以在$O(n\log_2n)$的时间内求多项式快速幂啦~

于是整道题就做完了,是不是很愉♂悦啊

全家桶真好玩

#include<stdio.h>
#include<string.h>
const int mod=950009857;
typedef long long ll;
int mul(int a,int b){return a*(ll)b%mod;}
int ad(int a,int b){return(a+b)%mod;}
int de(int a,int b){return(a-b)%mod;}
int pow(int a,int b){
	int s=1;
	while(b){
		if(b&1)s=mul(s,a);
		a=mul(a,a);
		b>>=1;
	}
	return s;
}
int rev[300010],N,iN;
void pre(int n){
	int i,k;
	for(N=1,k=0;N<n;N<<=1)k++;
	for(i=0;i<N;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<(k-1));
	iN=pow(N,mod-2);
}
void swap(int&a,int&b){a^=b^=a^=b;}
void ntt(int*a,int on){
	int i,j,k,t,w,wn;
	for(i=0;i<N;i++){
		if(i<rev[i])swap(a[i],a[rev[i]]);
	}
	for(i=2;i<=N;i<<=1){
		wn=pow(7,(on==1)?(mod-1)/i:(mod-1-(mod-1)/i));
		for(j=0;j<N;j+=i){
			w=1;
			for(k=0;k<i>>1;k++){
				t=mul(w,a[i/2+j+k]);
				a[i/2+j+k]=de(a[j+k],t);
				a[j+k]=ad(a[j+k],t);
				w=mul(w,wn);
			}
		}
	}
	if(on==-1){
		for(i=0;i<N;i++)a[i]=mul(a[i],iN);
	}
}
int t0[300010];
void getinv(int*a,int*b,int n){
	if(n==1){
		b[0]=pow(a[0],mod-2);
		return;
	}
	int i;
	getinv(a,b,n>>1);
	pre(n<<1);
	memset(t0,0,sizeof(t0));
	for(i=0;i<n;i++)t0[i]=a[i];
	ntt(t0,1);
	ntt(b,1);
	for(i=0;i<N;i++)b[i]=mul(b[i],2-mul(b[i],t0[i]));
	ntt(b,-1);
	for(i=n;i<N;i++)b[i]=0;
}
int t1[300010],inv[300010];
void getln(int*a,int*b,int n){
	int i;
	memset(t1,0,sizeof(t1));
	getinv(a,t1,n);
	for(i=1;i<n;i++)b[i-1]=mul(i,a[i]);
	ntt(b,1);
	ntt(t1,1);
	for(i=0;i<N;i++)b[i]=mul(b[i],t1[i]);
	ntt(b,-1);
	for(i=n-1;i>0;i--)b[i]=mul(b[i-1],inv[i]);
	b[0]=0;
	for(i=n;i<N;i++)b[i]=0;
}
int t2[300010];
void exp(int*a,int*b,int n){
	if(n==1){
		b[0]=1;
		return;
	}
	int i;
	exp(a,b,n>>1);
	memset(t2,0,sizeof(t2));
	getln(b,t2,n);
	for(i=0;i<n;i++)t2[i]=de(a[i],t2[i]);
	t2[0]++;
	ntt(b,1);
	ntt(t2,1);
	for(i=0;i<N;i++)b[i]=mul(b[i],t2[i]);
	ntt(b,-1);
	for(i=n;i<N;i++)b[i]=0;
}
int t3[300010];
void pow(int*a,int k,int*b,int n){
	int i;
	memset(t3,0,sizeof(t3));
	getln(a,t3,n);
	for(i=0;i<n;i++)t3[i]=mul(t3[i],k);
	exp(t3,b,n);
}
int a[300010],b[300010];
#define N 300000
int main(){
	int n,m,i,x;
	inv[1]=1;
	for(i=2;i<=N;i++)inv[i]=mul(mod/i,-inv[mod%i]);
	scanf("%d%d",&n,&m);
	for(i=0;i<m;i++){
		scanf("%d",&x);
		a[x-1]=-1;
	}
	a[0]=1;
	for(m=1;m<n;m<<=1);
	getinv(a,b,m);
	memset(a,0,sizeof(a));
	pow(b,n,a,m);
	printf("%d",(mul(a[n-1],inv[n])+mod)%mod);
}

[BZOJ3684]大朋友和多叉树的更多相关文章

  1. BZOJ3684 大朋友和多叉树(多项式相关计算)

    设$f(x)$为树的生成函数,即$x^i$的系数为根节点权值为$i$的树的个数.不难得出$f(x)=\sum_{k\in D}f(x)^k+x$我们要求这个多项式的第$n$项,由拉格朗日反演可得$[x ...

  2. bzoj3684: 大朋友和多叉树(拉格朗日反演+多项式全家桶)

    题面 传送门 题解 首先你得知道什么是拉格朗日反演->这里 我们列出树的个数的生成函数 \[T(x)=x+\prod_{i\in D}T^i(x)\] \[T(x)-\prod_{i\in D} ...

  3. BZOJ 3684: 大朋友和多叉树 [拉格朗日反演 多项式k次幂 生成函数]

    3684: 大朋友和多叉树 题意: 求有n个叶子结点,非叶节点的孩子数量\(\in S, a \notin S\)的有根树个数,无标号,孩子有序. 鏼鏼鏼! 树的OGF:\(T(x) = \sum_{ ...

  4. BZOJ 3684 大朋友和多叉树

    BZOJ 3684 大朋友和多叉树 Description 我们的大朋友很喜欢计算机科学,而且尤其喜欢多叉树.对于一棵带有正整数点权的有根多叉树,如果它满足这样的性质,我们的大朋友就会将其称作神犇的: ...

  5. [BZOJ3684][拉格朗日反演+多项式求幂]大朋友和多叉树

    题面 Description 我们的大朋友很喜欢计算机科学,而且尤其喜欢多叉树.对于一棵带有正整数点权的有根多叉树,如果它满足这样的性质,我们的大朋友就会将其称作神犇的:点权为\(1\)的结点是叶子结 ...

  6. 【BZOJ3684】大朋友和多叉树(拉格朗日反演)

    题目链接 题意 求满足如下条件的多叉树个数: 1.每一个点的儿子个数在给定的集合 \(S\) 内 2.总的叶子节点树为 \(s\) 儿子之间有顺序关系,但节点是没有标号的. Sol 拉格朗日反演板子题 ...

  7. 【bzoj3684】 大朋友和多叉树 生成函数+多项式快速幂+拉格朗日反演

    这题一看就觉得是生成函数的题... 我们不妨去推下此题的生成函数,设生成函数为$F(x)$,则$[x^s]F(x)$即为答案. 根据题意,我们得到 $F(x)=x+\sum_{i∈D} F^i(x)$ ...

  8. P2008 大朋友的数字

    题目描述 有一批大朋友(年龄15岁以上),他们每人手上拿着一个数字,当然这个数字只有1位,也就是0到9之间.每个大朋友的分数为在他之前的最长不下降子序列中所有数之和.(这个序列必须以它作为结尾!)如有 ...

  9. 洛谷 P2008 大朋友的数字

    DP,动态规划   树状数组   最长不下降子序列 by  GeneralLiu 题目 就是说给一串由 0~9 组成的序列 求 以 i (1~n) 结尾 的 最长不下降子序列 的 和 (最长不下降子序 ...

随机推荐

  1. CodeForces743E. Vladik and cards 二分+状压dp

    这个题我们可以想象成_---___-----__的一个水柱它具有一遍优一遍行的性质因此可以用来二分最小值len,而每次二分后我们都要验根,we可以把这个水柱想成我们在每个数段里取前一段的那个数后一段有 ...

  2. [zhuan]Android安全讲座第九层(二) 内存dump

    http://sunzeduo.blog.51cto.com/2758509/1409450 近来android上越来越多的应用对自身的保护机制加强了重视,主要表现在几个方面. 1 dex加壳 2 s ...

  3. CentOs7 minimal安装后没有ifconfig命令解决方法

    没有ifconfig命令目前我了解两个原因: 1./sbin/ifconfig 可以执行,但是ifconfig无法执行.这个解决的时候只需要将/sbin 添加到PATH下就可以了. 2.系统未安装if ...

  4. Join EC2 into AD with SSM and remote powershell in AWS

    1.Create joinad.ps1 $username = "ad-domain\admin" $Password = "password" $pwd = ...

  5. IntValue()方法 和 ValueOf()方法

    intValue() 1.intValue()是java.lang.Number类的方法,Number是一个抽象类.Java中所有的数值类都继承它.也就是说,不单是Integer有intValue方法 ...

  6. 基于MapReduce的手机流量统计分析

    1,代码 package mr; import java.io.IOException; import org.apache.commons.lang.StringUtils; import org. ...

  7. MAC电脑密码破解

    [第一个方法] 开机,启动时按cmd+S,进入Single User Mode,出现像DOS一样的提示符#root> 在#root>下输入(注意空格,大小写)   fsck -y moun ...

  8. 【洛谷 P1651】 塔 (差值DP)

    题目链接 题意:\(n\)个木块放到两个塔里,每个木块可放可不放,使得两塔高度相同且高度最大,求最大高度. 这个差值\(DP\)的思维难度还是很大的,没想出来,我就打了一个\(dfs\)骗了好像\(2 ...

  9. 全局axios默认值 和 自定义实例默认值

    首先说了一下情况, 登录后成功返回token 然后在带着token去继续下面的请求, 奇怪的是都是当前页面起作用,刷新和跳转之后就token 就消失了. 查了 axios文档发现 被自己坑了 我设置了 ...

  10. syntax error near unexpected token `then'问题的解决

    http://blog.csdn.net/gongmin856/article/details/7690917 #!/bin/bash #if program test echo 'a:' read ...