Query on a tree II 倍增LCA
You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, 3...N-1. Each edge has an integer value assigned to it, representing its length.
We will ask you to perfrom some instructions of the following form:
- DIST a b : ask for the distance between node a and node b
or - KTH a b k : ask for the k-th node on the path from node a to node b
Example:
N = 6
1 2 1 // edge connects node 1 and node 2 has cost 1
2 4 1
2 5 2
1 3 1
3 6 2
Path from node 4 to node 6 is 4 -> 2 -> 1 -> 3 -> 6
DIST 4 6 : answer is 5 (1 + 1 + 1 + 2 = 5)
KTH 4 6 4 : answer is 3 (the 4-th node on the path from node 4 to node 6 is 3)
Input
The first line of input contains an integer t, the number of test cases (t <= 25). t test cases follow.
For each test case:
- In the first line there is an integer N (N <= 10000)
- In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between a, b of cost c (c <= 100000)
- The next lines contain instructions "DIST a b" or "KTH a b k"
- The end of each test case is signified by the string "DONE".
There is one blank line between successive tests.
Output
For each "DIST" or "KTH" operation, write one integer representing its result.
Print one blank line after each test.
Example
Input:
1 6
1 2 1
2 4 1
2 5 2
1 3 1
3 6 2
DIST 4 6
KTH 4 6 4
DONE Output:
5
3
看到树上两点距离很容易想到LCA,
对于第K个点我们同样可以倍增解决;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<time.h>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
#define mclr(x,a) memset((x),a,sizeof(x))
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 9999973;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii; inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ struct node {
int u, v, w, nxt;
}e[maxn];
int head[maxn];
int tot;
int n;
int dis[maxn], dep[maxn];
int fa[maxn][20];
void init() {
ms(e); ms(head); tot = 0; ms(dis); ms(dep);
ms(fa);
} void addedge(int u, int v, int w) {
e[++tot].u = u; e[tot].v = v; e[tot].nxt = head[u]; e[tot].w = w;
head[u] = tot;
} void dfs(int rt) {
for (int i = 1; i <= (int)log(n) / log(2) + 1; i++)
fa[rt][i] = fa[fa[rt][i - 1]][i - 1];
for (int i = head[rt]; i; i = e[i].nxt) {
int v = e[i].v;
if (v == fa[rt][0])continue;
fa[v][0] = rt; dep[v] = dep[rt] + 1;
dis[v] = dis[rt] + e[i].w;
dfs(v);
}
} int LCA(int x, int y) {
if (dep[x] > dep[y])swap(x, y);
for (int i = (int)log(n) / log(2) + 1; i >= 0; i--) {
if (dep[fa[y][i]] >= dep[x])y = fa[y][i];
}
if (x == y)return x;
for (int i = (int)log(n) / log(2) + 1; i >= 0; i--) {
if (fa[x][i] != fa[y][i]) {
x = fa[x][i]; y = fa[y][i];
}
}
return fa[x][0];
} int main()
{
// ios::sync_with_stdio(0);
int T = rd();
while (T--) {
n = rd();
init();
for (int i = 1; i < n; i++) {
int u = rd(), v = rd(), w = rd();
addedge(u, v, w); addedge(v, u, w);
}
dfs(1);
char op[20];
while (rdstr(op) != EOF && op[1] != 'O') {
if (op[1] == 'I') {
int u = rd(), v = rd();
// cout << dis[u] << ' ' << dis[v] << ' ' << dis[LCA(u, v)] << endl;
printf("%d\n", dis[u] + dis[v] - 2 * dis[LCA(u, v)]);
}
else {
int u = rd(), v = rd(), k = rd();
int root = LCA(u, v);
int ans;
if (dep[u] - dep[root] + 1 >= k) {
ans = dep[u] - k + 1;
int i;
for (i = 0; (1 << i) <= dep[u]; i++); i--;
for (int j = i; j >= 0; j--) {
if (dep[u] - (1 << j) >= ans)u = fa[u][j];
}
printf("%d\n", u);
}
else {
ans = dep[root] + k - (dep[u] - dep[root] + 1);
int i;
for (i = 0; (1 << i) <= dep[v]; i++); i--;
for (int j = i; j >= 0; j--) {
if (dep[v] - (1 << j) >= ans)v = fa[v][j];
}
printf("%d\n", v);
}
}
}
}
return 0;
}
Query on a tree II 倍增LCA的更多相关文章
- spoj 913 Query on a tree II (倍增lca)
Query on a tree II You are given a tree (an undirected acyclic connected graph) with N nodes, and ed ...
- 【SPOJ QTREE2】QTREE2 - Query on a tree II(LCA)
You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, ...
- LCA SP913 QTREE2 - Query on a tree II
SP913 QTREE2 - Query on a tree II 给定一棵n个点的树,边具有边权.要求作以下操作: DIST a b 询问点a至点b路径上的边权之和 KTH a b k 询问点a至点 ...
- [SPOJ913]QTREE2 - Query on a tree II【倍增LCA】
题目描述 [传送门] 题目大意 给一棵树,有两种操作: 求(u,v)路径的距离. 求以u为起点,v为终点的第k的节点. 分析 比较简单的倍增LCA模板题. 首先对于第一问,我们只需要预处理出根节点到各 ...
- SPOJ COT2 - Count on a tree II(LCA+离散化+树上莫队)
COT2 - Count on a tree II #tree You are given a tree with N nodes. The tree nodes are numbered from ...
- SPOJ Query on a tree II (树剖||倍增LCA)(占位)
You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, ...
- LCA【SP913】Qtree - Query on a tree II
Description 给定一棵n个点的树,边具有边权.要求作以下操作: DIST a b 询问点a至点b路径上的边权之和 KTH a b k 询问点a至点b有向路径上的第k个点的编号 有多组测试数据 ...
- QTREE2 spoj 913. Query on a tree II 经典的倍增思想
QTREE2 经典的倍增思想 题目: 给出一棵树,求: 1.两点之间距离. 2.从节点x到节点y最短路径上第k个节点的编号. 分析: 第一问的话,随便以一个节点为根,求得其他节点到根的距离,然后对于每 ...
- SPOJ913 Query on a tree II
Time Limit: 433MS Memory Limit: 1572864KB 64bit IO Format: %lld & %llu Description You are g ...
随机推荐
- localtime 的性能问题及其替代者
在系统从redhat5升到redhat6的过程中,服务的性能差了很多.经过定位发现是程序中频繁调用localtime/localtime_r所致. 而调用localtime_r 的实现中,对时区进行了 ...
- OK6410之tftp下载内核,nfs…
原文地址:OK6410之tftp下载内核,nfs挂载文件系统全过程详解[转]作者:千山我独行 由于工作的平台也是嵌入式,差不多的平台,所以一直就没有把自己买过来的ok6410板子好好玩玩.以前一直都是 ...
- java实现 数组中两个元素相加等于指定数的所有组合
package com.algorithm.hash; public class alg1 { public static void main(String argv[]) { int[] arr ...
- ajax跨域请求解决方案 CORS和JSONP
什么是跨域: 只要协议.域名.端口有任何一个不同,都会被当成不同的域.而由于浏览器的同源策略(同源策略:域名.协议.端口均相同),浏览器之间要隔离不同域的内容,禁止互相操作,不能执行其他网站的js.所 ...
- 用C/C++扩展你的PHP
PHP取得成功的一个主要原因之一是她拥有大量的可用扩展.web开发者无论有何种需求,这种需求最有可能在PHP发行包里找到.PHP发行包包括支持各种数据库,图形文件格式,压缩,XML技术扩展在内的许多扩 ...
- 520. Detect Capital判断单词有效性
[抄题]: Given a word, you need to judge whether the usage of capitals in it is right or not. We define ...
- Yii2邮箱发送与配置
1配置邮箱 在 common/config/web.php中写入以下代码配置 Mail代理 return [ 'components' => [ ...//your code, //以下是 ma ...
- Oracle——单行函数
两种 SQL 函数 单行函数 字符函数 大小写控制函数 SELECT employee_id, last_name, department_id FROM employees WHERE last_n ...
- 智能IC卡与终端(读卡器)之间的传输协议
1.有两种协议 T=0,异步半双工字符传输协议 T=1,异步半双工块传输协议 终端一般都支持这两种协议,IC卡可以选择支持其中的一种.(因为终端可能需要面对各种类型的卡片,所以必须两种协议都支持,而卡 ...
- datetime 2017-10-21 10:09:02.560 转年月日的时间类型
sql语句时间转年月日格式: 适用于多种时间格式 select REPLACE(STUFF(CONVERT(char(10), REPLACE(CONVERT(varchar(10),'2017-1 ...