Quoit Design

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 48729    Accepted Submission(s): 12823

Problem Description
Have
you ever played quoit in a playground? Quoit is a game in which flat
rings are pitched at some toys, with all the toys encircled awarded.
In
the field of Cyberground, the position of each toy is fixed, and the
ring is carefully designed so it can only encircle one toy at a time. On
the other hand, to make the game look more attractive, the ring is
designed to have the largest radius. Given a configuration of the field,
you are supposed to find the radius of such a ring.

Assume that
all the toys are points on a plane. A point is encircled by the ring if
the distance between the point and the center of the ring is strictly
less than the radius of the ring. If two toys are placed at the same
point, the radius of the ring is considered to be 0.

 
Input
The
input consists of several test cases. For each case, the first line
contains an integer N (2 <= N <= 100,000), the total number of
toys in the field. Then N lines follow, each contains a pair of (x, y)
which are the coordinates of a toy. The input is terminated by N = 0.
 
Output
For
each test case, print in one line the radius of the ring required by
the Cyberground manager, accurate up to 2 decimal places.
 
Sample Input
2
0 0
1 1
2
1 1
1 1
3
-1.5 0
0 0
0 1.5
0
 
Sample Output
0.71
0.00
0.75
 
Author
CHEN, Yue
 
Source
 
题意:
求点集中相距最小的两个点,他们之间的距离的一半。
代码:

 //分治法求最近点对模板。详解《算法导论》610页。//至于将y坐标只预排序一次怎么写呢。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int n;
int a[];
struct nod
{
double x,y;
}p[];
bool cmpx(nod p1,nod p2)
{
return p1.x<p2.x;
}
bool cmpy(int a1,int a2)
{
return p[a1].y<p[a2].y;
}
double dis(int s,int e)
{
return sqrt((p[s].x-p[e].x)*(p[s].x-p[e].x)+(p[s].y-p[e].y)*(p[s].y-p[e].y));
}
double Min(double a1,double a2,double a3)
{
return a1<a2?(a1<a3?a1:a3):(a2<a3?a2:a3);
}
double fenzhi(int s,int e)
{
if(s+==e)
return dis(s,e);
if(s+==e)
return Min(dis(s,s+),dis(s,e),dis(s+,e));
int mid=(s+e)>>;
double ans=min(fenzhi(s,mid),fenzhi(mid+,e));
int k=;
for(int i=s;i<=e;i++)
{
if(fabs(p[i].x-p[mid].x)<ans)
a[k++]=i;
}
sort(a,a+k,cmpy);
for(int i=;i<k;i++)
for(int j=i+;j<=i+&&j<k;j++)
{
if(p[a[j]].y-p[a[i]].y>=ans) break;
else ans=min(ans,dis(a[i],a[j]));
}
return ans;
}
int main()
{
while(scanf("%d",&n)&&n)
{
for(int i=;i<n;i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
sort(p,p+n,cmpx);
double ans=fenzhi(,n-);
printf("%.2lf\n",ans/);
}
return ;
}

*HDU 1007 计算几何的更多相关文章

  1. HDU 1007 Quoit Design(二分+浮点数精度控制)

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  2. HDU 1007 Quoit Design(计算几何の最近点对)

    Problem Description Have you ever played quoit in a playground? Quoit is a game in which flat rings ...

  3. HDU 1007 Quoit Design【计算几何/分治/最近点对】

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  4. 【HDU 1007】Quoit Design

    http://acm.hdu.edu.cn/showproblem.php?pid=1007 最近欧式距离模板题. 用分治大法(分治的函数名用cdq纯属个人习惯_(:з」∠)_) 一开始狂M. 后来判 ...

  5. hdu 2108:Shape of HDU(计算几何,判断多边形是否是凸多边形,水题)

    Shape of HDU Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  6. HDU 1007 Quoit Design(经典最近点对问题)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...

  7. 【HDU 1007】 Quoit Design

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=1007 [算法] 答案为平面最近点对距离除以2 [代码] #include <algorith ...

  8. HDU 1007 Quoit Design 平面内最近点对

    http://acm.hdu.edu.cn/showproblem.php?pid=1007 上半年在人人上看到过这个题,当时就知道用分治但是没有仔细想... 今年多校又出了这个...于是学习了一下平 ...

  9. HDU 1007:Quoit Design(分治求最近点对)

    http://acm.hdu.edu.cn/showproblem.php?pid=1007 题意:平面上有n个点,问最近的两个点之间的距离的一半是多少. 思路:用分治做.把整体分为左右两个部分,那么 ...

随机推荐

  1. tp框架验证信息

    今天在这里我们学习一下tp框架里面怎么做验证. 验证又分为两种:静态验证.动态验证 首先,我们还是先做一个html界面,名为add.html.代码如下: <!DOCTYPE html PUBLI ...

  2. 自定义 URL Scheme 完全指南

    本文由 Migrant 翻译自 The Complete Tutorial on iOS/iPhone Custom URL Schemes,转载请注明出处. 注意: 自从自定义 URL 的引入,本文 ...

  3. jquery mobile

    页面:data-role="page"  header.content.fooder 过渡:data-transition ="slide"  反向过渡:dat ...

  4. log4j 文档

    log4j中文文档  中文详细教程 log4j中文文档   这篇文章描述了Log4j的API.独一无二的特色和设计原理.Log4j是一个聚集了许多作者劳动成果的开源软件项目.它允许开发人眼以任意的粒度 ...

  5. Unity Cookie

    1   在Unity里面,选择脚本单击左键打开 Sync Mono Development  这样就可以打开整个工程的脚本文件 进而才能在脚本中继续进行切换      Mesh    MeshFilt ...

  6. elasticsearch5.0.0 安装插件及配置过程

    elasticsearch5.0.0 安装插件及配置过程 由于es5.0是里程碑式的更新,所以很多变化的地方,暂时我就插件安装遇到的问题记录一下. 插件安装命令 2.3版本的安装命令 安装Marvel ...

  7. mysql介绍及安装

    一.MySQL介绍 1.标志 MySQL的海豚标志的名字叫"sakila",它是由MySQL AB的创始人从用户在"海豚命名"的竞赛中建议的大量的名字表中选出的 ...

  8. 【协议分析】Wireshark 过滤表达式实例

    Wireshark 过滤表达式实例   1.wireshark基本的语法 字符 \d          0-9的数字 \D          \d的补集(以所以字符为全集,下同),即所有非数字的字符 ...

  9. Centos 6.5 X64 环境下编译 hadoop 2.6.0 --已验证

    Centos 6.5 x64 hadoop 2.6.0 jdk 1.7 protobuf-2.5.0 maven-3.0.5 set environment export JAVA_HOME=/hom ...

  10. [原创]Centos7 从零配置Nginx+PHP+MySql

    序言 这次玩次狠得.除了编译器使用yum安装,其他全部手动编译.哼~ 看似就Nginx.PHP.MySql三个东东,但是它们太尼玛依赖别人了. 没办法,想用它们就得老老实实给它们提供想要的东西. 首先 ...