Time Limit: 1000MS
Memory Limit: 65536K
Total Submissions: 9311
Accepted: 4039

Description

The cornfield maze is a popular Halloween treat. Visitors are shown the entrance and must wander through the maze facing zombies, chainsaw-wielding psychopaths, hippies, and other terrors on their quest
to find the exit.



One popular maze-walking strategy guarantees that the visitor will eventually find the exit. Simply choose either the right or left wall, and follow it. Of course, there's no guarantee which strategy (left or right) will be better, and the path taken is seldom
the most efficient. (It also doesn't work on mazes with exits that are not on the edge; those types of mazes are not represented in this problem.)




As the proprieter of a cornfield that is about to be converted into a maze, you'd like to have a computer program that can determine the left and right-hand paths along with the shortest path so that you can figure out which layout has the best chance of confounding
visitors.

Input

Input to this problem will begin with a line containing a single integer n indicating the number of mazes. Each maze will consist of one line with a width, w, and height, h (3 <= w, h <= 40), followed
by h lines of w characters each that represent the maze layout. Walls are represented by hash marks ('#'), empty space by periods ('.'), the start by an 'S' and the exit by an 'E'.




Exactly one 'S' and one 'E' will be present in the maze, and they will always be located along one of the maze edges and never in a corner. The maze will be fully enclosed by walls ('#'), with the only openings being the 'S' and 'E'. The 'S' and 'E' will also
be separated by at least one wall ('#').



You may assume that the maze exit is always reachable from the start point.

Output

For each maze in the input, output on a single line the number of (not necessarily unique) squares that a person would visit (including the 'S' and 'E') for (in order) the left, right, and shortest
paths, separated by a single space each. Movement from one square to another is only allowed in the horizontal or vertical direction; movement along the diagonals is not allowed.

Sample Input

2
8 8
########
#......#
#.####.#
#.####.#
#.####.#
#.####.#
#...#..#
#S#E####
9 5
#########
#.#.#.#.#
S.......E
#.#.#.#.#
#########

Sample Output

37 5 5
17 17 9

1.题意:有一个迷宫,#代表墙,..代表能走。S是起点。E是终点W为宽。列数H为高。

先输出左转优先时。从S到E的步数

再输出右转优先时,从S到E的步数

最后输出S到E的最短步数

自己写的有非常多问题。。

后面我发现别人都是用什么数学方法来确定向左还是向右。。我立即就Orz了。

那些人里面。写的最好的就是这个了点击打开链接

。尼玛,又看了结题报告。。╮(╯▽╰)╭。。

简直丧心病狂。。剁手。。。好吧。。题外话就不多说了。。。其它的他都说的非常具体了。

。。我也就

打打酱油吧。。。。。。。。

Orz。。。。。。

。。。


#include<cstdio>
#include<iostream>
#include<cstring>
#include<queue>
#include<algorithm>
#include<vector> using namespace std; const int N = 105; char map[N][N];
int vist[N][N]; struct node
{
int x;
int y;
int num;
};
queue<node>q;
node first; int dx[4]={1,-1,0,0};
int dy[4]={0,0,-1,1};
int fx[]= {0,1,0,-1};
int fy[]= {1,0,-1,0};
int fr[]= {1,0,3,2};
int fl[]= {3,0,1,2};
int ans;
int t, n, m;
int xx, yy;
int d; void L_dfs(int x, int y, int d) //靠左墙
{
ans++;
if( map[x][y] == 'E' )
{
printf( "%d", ans );
ans = 0; //记得初始
return ;
}
for(int i=0; i<4; i++)
{
int j = ( d + fl[i] ) % 4;
xx = x + fx[j];
yy = y + fy[j];
if(xx>=1 && xx<=n && yy>=1 && yy<=m && map[xx][yy]!='#')
{
L_dfs(xx, yy, j);
return ; //少了直接爆掉
}
} } void R_dfs(int x, int y, int d) //向右
{
ans++;
if( map[x][y] == 'E' )
{
printf(" %d", ans );
ans = 0;
return ;
}
for(int i=0; i<4; i++)
{
int j= ( d + fr[i] ) % 4;
xx = x + fx[j];
yy = y + fy[j];
if(xx>=1 && xx<=n && yy>=1 && yy<=m && map[xx][yy]!='#')
{
R_dfs(xx, yy, j);
return ;
}
} } void S_bfs() //最短路径
{
memset( vist, false, sizeof( vist ) );
vist[first.x][first.y] = true;
while( !q.empty() )
{
node temp = q.front();
q.pop();
if( map[temp.x][temp.y]=='E' )
{
printf(" %d\n", temp.num+1);
break;
}
for(int i=0; i<4; i++)
{ xx = temp.x + dx[i];
yy = temp.y + dy[i];
if( xx>=1 && xx<=n &&yy>=1 &&yy<=m && !vist[xx][yy] && map[xx][yy]!='#' )
{
node next;
next.x = xx;
next.y = yy;
next.num = temp.num + 1;
vist[xx][yy] = true;
q.push( next );
}
}
}
} int main()
{
scanf("%d\n", &t);
while( t-- )
{
memset( vist, false, sizeof( vist ) );
while( !q.empty() ) q.pop();
scanf("%d%d", &m, &n);
for(int i=1; i<=n; i++)
for(int j=1; j<=m; j++)
{
cin>>map[i][j];
if( map[i][j]=='S' )
{
first.x = i;
first.y = j;
}
}
first.num = 0; ans = 0;
vist[first.x][first.y] = true;
q.push( first );
if(first.x==1) d=0;
if(first.x==n) d=2;
if(first.y==1) d=1;
if(first.y==m) d=3;
L_dfs( first.x, first.y, d);
R_dfs( first.x, first.y, d);
S_bfs();
} return 0;
}

POJ 3083:Children of the Candy Corn(DFS+BFS)的更多相关文章

  1. POJ 3083 -- Children of the Candy Corn(DFS+BFS)TLE

    POJ 3083 -- Children of the Candy Corn(DFS+BFS) 题意: 给定一个迷宫,S是起点,E是终点,#是墙不可走,.可以走 1)先输出左转优先时,从S到E的步数 ...

  2. poj 3083 Children of the Candy Corn(DFS+BFS)

    做了1天,总是各种错误,很无语 最后还是参考大神的方法 题目:http://poj.org/problem?id=3083 题意:从s到e找分别按照左侧优先和右侧优先的最短路径,和实际的最短路径 DF ...

  3. POJ 3083:Children of the Candy Corn

    Children of the Candy Corn Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11015   Acce ...

  4. poj 3083 Children of the Candy Corn (广搜,模拟,简单)

    题目 靠墙走用 模拟,我写的是靠左走,因为靠右走相当于 靠左走从终点走到起点. 最短路径 用bfs. #define _CRT_SECURE_NO_WARNINGS #include<stdio ...

  5. POJ3083 Children of the Candy Corn(搜索)

    题目链接. 题意: 先沿着左边的墙从 S 一直走,求到达 E 的步数. 再沿着右边的墙从 S 一直走,求到达 E 的步数. 最后求最短路. 分析: 最短路好办,关键是沿着墙走不太好想. 但只要弄懂如何 ...

  6. POJ3083 Children of the Candy Corn(Bfs + Dfs)

    题意:给一个w*h的迷宫,其中矩阵里面 S是起点,E是终点,“#”不可走,“.”可走,而且,S.E都只会在边界并且,不会在角落,例如(0,0),输出的话,每组数据就输出三个整数,第一个整数,指的是,以 ...

  7. POJ-3083 Children of the Candy Corn (BFS+DFS)

    Description The cornfield maze is a popular Halloween treat. Visitors are shown the entrance and mus ...

  8. POJ 2739:Sum of Consecutive Prime Numbers(Two pointers)

    [题目链接] http://poj.org/problem?id=2739 [题目大意] 求出一个数能被拆分为相邻素数相加的种类 [题解] 将素数筛出到一个数组,题目转化为求区段和等于某数的次数,尺取 ...

  9. 题解报告:hdu 2612 Find a way(双bfs)

    Problem Description Pass a year learning in Hangzhou, yifenfei arrival hometown Ningbo at finally. L ...

随机推荐

  1. python 复习 4-1 函数、参数、返回值、递归

    函数 完成特定功能的一个语句组,这个语句组可以作为一个单位使用,并且给它组语句取一个名子,即函数名 可以通过函数名在程序不同地方多次执行,即函数调用 预定义函数(可以直接使用) 自定义函数(自编写的) ...

  2. Getting or Setting Pixels

    Getting or Setting Pixels The safe (slow) way Suppose you are working on an Image<Bgr, Byte>. ...

  3. C# for Hbase 实现详解

    一共两种方式访问 通过Thrift访问 目前hbase src.tar.gz压缩包中包含thrift he thrift2; 根据官方文档,thrift可能被抛弃,但是网上基本上都是介绍thrift的 ...

  4. 动态加载ajax 腾讯视频评论

    import urllib import urllib2 import os import requests import re import json sns_url = 'http://sns.v ...

  5. serialVersionUID的作用(zz)

    http://www.cnblogs.com/guanghuiqq/archive/2012/07/18/2597036.html 简单来说,Java的序列化机制是通过在运行时判断类的serialVe ...

  6. HBuilder开发移动App——manifest.json文件解析

    以前做过Android App开发,对于各项配置都是在AndroidManifest.xml文件中完成的,包括权限的设定.图标.标签.App的名字.Activity注册等等 使用HBuilder开发移 ...

  7. c语言,warning: return type of 'main' is not `int'怎么解决?

    ////警告可以忽略,但如果严格点的话 #include<stdio.h> #include<math.h>   int main(int argc, char *arg[]) ...

  8. 实战WCF中net.tcp和net.msmq绑定协议

    平时很少写博文的,以前都是转载其他园友的文章,这几天有时间就自己尝试写一些wcf相关的文章,希望能给有需要的人带来一点帮助吧,水平有限再加上初次动手,写得不好还请多多包含!废话不多说了直接进入正题. ...

  9. React-Native集成dva.js

    dvajs作为一个基于redux的状态管理框架,在react中的表现还是很不错的,如果我们想要在react-native应用中使用dvajs该怎么做呢? 首先安装dva-core和react-redu ...

  10. 显示(explicit )与隐式(implicit)转换操作符

    class Program { static void Main(string[] args) { /* * 不管是显示还是隐式转换,一种类型都只能出现一次 */ Console.WriteLine( ...