愤怒的小鸟

题目描述

Kiana 最近沉迷于一款神奇的游戏无法自拔。

简单来说,这款游戏是在一个平面上进行的。

有一架弹弓位于 (0,0) 处,每次 Kiana 可以用它向第一象限发射一只红色的小鸟,小鸟们的飞行轨迹均为形如 y=ax^2+bx的曲线,其中 a,b是Kiana 指定的参数,且必须满足 a<0,a,b 都是实数。

当小鸟落回地面(即 x 轴)时,它就会瞬间消失。

在游戏的某个关卡里,平面的第一象限中有 n 只绿色的小猪,其中第 i 只小猪所在的坐标为 (xi​,yi​) 。

如果某只小鸟的飞行轨迹经过了 (xi​,yi​) ,那么第 i 只小猪就会被消灭掉,同时小鸟将会沿着原先的轨迹继续飞行;

如果一只小鸟的飞行轨迹没有经过 (xi​,yi​) ,那么这只小鸟飞行的全过程就不会对第 i 只小猪产生任何影响。

例如,若两只小猪分别位于 (1,3) 和 (3,3) ,Kiana 可以选择发射一只飞行轨迹为 y=-x^2+4x 的小鸟,这样两只小猪就会被这只小鸟一起消灭。

而这个游戏的目的,就是通过发射小鸟消灭所有的小猪。

这款神奇游戏的每个关卡对 Kiana来说都很难,所以Kiana还输入了一些神秘的指令,使得自己能更轻松地完成这个游戏。这些指令将在【输入格式】中详述。

假设这款游戏一共有 T 个关卡,现在 Kiana想知道,对于每一个关卡,至少需要发射多少只小鸟才能消灭所有的小猪。由于她不会算,所以希望由你告诉她。

输入输出格式

输入格式:

第一行包含一个正整数 T ,表示游戏的关卡总数。

下面依次输入这 T 个关卡的信息。每个关卡第一行包含两个非负整数 n,mn,m ,分别表示该关卡中的小猪数量和 Kiana 输入的神秘指令类型。接下来的 n 行中,第 ii 行包含两个正实数 xi​,yi​ ,表示第 i 只小猪坐标为 (xi​,yi​)。数据保证同一个关卡中不存在两只坐标完全相同的小猪。

如果 m=0 ,表示Kiana输入了一个没有任何作用的指令。

如果 m=1 ,则这个关卡将会满足:至多用 ⌈n/3+1⌉ 只小鸟即可消灭所有小猪。

如果 m=2 ,则这个关卡将会满足:一定存在一种最优解,其中有一只小鸟消灭了至少 ⌊n/3⌋ 只小猪。

保证 1≤n≤18 , 0≤m≤2 , 0<xi​,yi​<10 ,输入中的实数均保留到小数点后两位。

上文中,符号 ⌈c⌉ 和 ⌊c⌋ 分别表示对 c 向上取整和向下取整,例如: ⌈2.1⌉=⌈2.9⌉=⌈3.0⌉=⌊3.0⌋=⌊3.1⌋=⌊3.9⌋=3 。

输出格式:

对每个关卡依次输出一行答案。

输出的每一行包含一个正整数,表示相应的关卡中,消灭所有小猪最少需要的小鸟数量。

输入输出样例

输入样例#1:

2

2 0

1.00 3.00

3.00 3.00

5 2

1.00 5.00

2.00 8.00

3.00 9.00

4.00 8.00

5.00 5.00

输出样例#1:

1

1

输入样例#2:

3

2 0

1.41 2.00

1.73 3.00

3 0

1.11 1.41

2.34 1.79

2.98 1.49

5 0

2.72 2.72

2.72 3.14

3.14 2.72

3.14 3.14

5.00 5.00

输出样例#2:

2

2

3

输入样例#3:

1

10 0

7.16 6.28

2.02 0.38

8.33 7.78

7.68 2.09

7.46 7.86

5.77 7.44

8.24 6.72

4.42 5.11

5.42 7.79

8.15 4.99

输出样例#3:

6

说明

【样例解释1】

这组数据中一共有两个关卡。

第一个关卡与【问题描述】中的情形相同,2只小猪分别位于 (1.00,3.00) 和 (3.00,3.00) ,只需发射一只飞行轨迹为 y = -x^2 + 4x 的小鸟即可消灭它们。

第二个关卡中有 5 只小猪,但经过观察我们可以发现它们的坐标都在抛物线 y = -x^2 + 6x 上,故Kiana只需要发射一只小鸟即可消灭所有小猪。

【数据范围】

题解

这道题有三种做法:强力剪枝搜索,记忆化搜索,状压dp,这里主要讲状压dp的做法

题目要求我们用最少的小鸟击落所有的猪,而小鸟的运动轨迹是一条抛物线,那么我们就想可不可以枚举两个不同的小鸟来来确定这条抛物线呢?这是肯定的,因为这条抛物线只有两个参数a,b,我们将两个小鸟的坐标带入进去就可以求得这两个参数,解二元一次方程,这应该是初中数学内容

\(a*x_1^2+b*x_1=y_1\)

\(a*x_2^2+b*x_2=y_2\)

得到

\(a=(x_2*y_1-x_1*y_2)/(x_1^2*x_2-x_2^2*x_1);\)

\(b=(x_1^2*y_2-x_2^2*y_1)/(x_1^2*x_2-x_2^2*x_1);\)

然后要注意\(x_1^2*x_2-x_2^2*x_1!=0\),即分母不能为0

求出这条抛物线后,我们就可以预处理这条抛物线打下了哪些猪,可以用一个二位数组f[i][j]保存通过枚举i和j这两个猪所构成的抛物线打下了哪些猪

注意:题目要求a<0,所以碰到a>0的情况就要舍去,fabs是取浮点数的绝对值,虽然abs也可用但是慢很多

然后就是标准的状压dp,状态转移方程为dp[sta|f[i][j]]=min(dp[sta|f[i][j]],dp[sta]+1),这里的f[i][j]指的是是合法的抛物线

#include<bits/stdc++.h>
#define rg register
#define il inline
#define Min(a,b) (a)<(b)?(a):(b)
#define Max(a,b) (a)>(b)?(a):(b)
#define lol long long
using namespace std; const int N=20;
const double eps=1e-10; void in(int &ans) {
ans=0; int f=1; char i=getchar();
while(i<'0' || i>'9') {if(i=='-') f=-1; i=getchar();}
while(i>='0' && i<='9') ans=(ans<<1)+(ans<<3)+i-'0',i=getchar();
ans*=f;
} int T,n,m;
double a,b,x[N],y[N];
int dp[1<<18],s[N][N]; il void clear() {
a=b=0;
memset(dp,0x3f,sizeof(dp));
memset(s,0,sizeof(s));
} bool check(int i,int j) {
if(fabs((x[j]-x[i])/(x[i]*x[j]))<=eps) return 0;
a=(x[i]*y[j]-x[j]*y[i])/(x[j]-x[i])/(x[i]*x[j]);
b=(x[i]*x[i]*y[j]-x[j]*x[j]*y[i])/(x[i]*x[i]*x[j]-x[j]*x[j]*x[i]);
return (a<0);
} void read() {
in(n),in(m);
for(rg int i=1;i<=n;i++)
scanf("%lf%lf",&x[i],&y[i]);
} void work() {
for(rg int i=1;i<=n;i++) {
for(rg int j=1;j<=n;j++) {
if(fabs(x[i]-x[j])<=eps) continue;
if(!check(i,j)) continue;
s[i][j]|=(1<<i-1)|(1<<j-1);
for(rg int k=1;k<=n;k++) {
if(i==k || j==k) continue;
if(fabs(a*x[k]*x[k]+b*x[k]-y[k])<=eps) s[i][j]|=1<<k-1;
}
}
}
} void DP() {
int tot=1<<n; dp[0]=0;
for(rg int sta=0;sta<tot;sta++) {
for(rg int i=1;i<=n;i++) {
if(sta&(1<<i-1)) continue;
for(rg int j=1;j<=n;j++) {
if(!s[i][j]) continue;
if(sta&(1<<j-1)) continue;
if(fabs(x[i]-x[j])<=eps) continue;
dp[sta|s[i][j]]=Min(dp[sta|s[i][j]],dp[sta]+1);
}
dp[sta|(1<<i-1)]=Min(dp[sta|(1<<i-1)],dp[sta]+1);
}
}
printf("%d\n",dp[(1<<n)-1]);
} int main()
{
in(T);
while(T--) {
clear(),read();
work(),DP();
}
return 0;
}

NOIP2016愤怒的小鸟 [状压dp]的更多相关文章

  1. luogu2831 [NOIp2016]愤怒的小鸟 (状压dp)

    由范围可以想到状压dp 两个点(再加上原点)是可以确定一个抛物线的,除非它们解出来a>=0,在本题中是不合法的 这样的话,我们可以预处理出由任意两个点确定的抛物线所经过的所有的点(要特别规定一下 ...

  2. [noip2016]愤怒的小鸟<状压dp+暴搜>

    题目链接:https://vijos.org/p/2008 现在回过头去看去年的考试题,发现都不是太难,至少每道题都有头绪了... 这道题的数据范围是18,这么小,直接暴力呗,跑个暴搜就完了,时间也就 ...

  3. [Luogu P2831] 愤怒的小鸟 (状压DP)

    题面: 传送门:https://www.luogu.org/problemnew/show/P2831 Solution 首先,我们可以先康一康题目的数据范围:n<=18,应该是状压或者是搜索. ...

  4. 洛谷P2831 愤怒的小鸟(状压dp)

    题意 题目链接 Sol 这题....我样例没过就A了??..算了,就当是样例卡精度吧.. 直接状压dp一下,\(f[sta]\)表示干掉\(sta\)这个集合里面的鸟的最小操作数 转移的时候判断一下一 ...

  5. NOIP2016Day2T3愤怒的小鸟(状压dp) O(2^n*n^2)再优化

    看这范围都知道是状压吧... 题目大意就不说了嘿嘿嘿 网上流传的写法复杂度大都是O(2^n*n^2),这个复杂度虽然官方数据可以过,但是在洛谷上会TLE[百度搜出来前几个博客的代码交上去都TLE了], ...

  6. 【题解】P2831 愤怒的小鸟 - 状压dp

    P2831愤怒的小鸟 题目描述 \(Kiana\) 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于 \((0,0)\) 处,每次 \(Kiana\) 可以 ...

  7. P2831 愤怒的小鸟 状压dp

    这个题主要是预处理比较复杂,先枚举打每只鸟用的抛物线,然后找是否有一个抛物线经过两只鸟,然后就没了. 题干: 题目描述 Kiana 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上 ...

  8. [NOIP2016]愤怒的小鸟 D2 T3 状压DP

    [NOIP2016]愤怒的小鸟 D2 T3 Description Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可 ...

  9. Noip2016愤怒的小鸟(状压DP)

    题目描述 题意大概就是坐标系上第一象限上有N只猪,每次可以构造一条经过原点且开口向下的抛物线,抛物线可能会经过某一或某些猪,求使所有猪被至少经过一次的抛物线最少数量. 原题中还有一个特殊指令M,对于正 ...

随机推荐

  1. 数据分析处理库Pandas——索引进阶

    Series结构 筛选数据 指定值 备注:查找出指定数值的索引和数值. 逻辑运算 备注:查找出值大于2的数据. 复合索引 DataFrame结构 显示指定列 筛选显示 备注:值小于0的显示原值,否则显 ...

  2. Python进阶-函数默认参数

    Python进阶-函数默认参数 写在前面 如非特别说明,下文均基于Python3 一.默认参数 python为了简化函数的调用,提供了默认参数机制: def pow(x, n = 2): r = 1 ...

  3. (数据科学学习手札31)基于Python的网络数据采集(初级篇)

    一.简介 在实际的业务中,我们手头的数据往往难以满足需求,这时我们就需要利用互联网上的资源来获取更多的补充数据,但是很多情况下,有价值的数据往往是没有提供源文件的直接下载渠道的(即所谓的API),这时 ...

  4. 【Leetcode】647. Palindromic Substrings

    Description Given a string, your task is to count how many palindromic substrings in this string. Th ...

  5. HBase Scan,Get用法

    Scan,get用法 1. get help帮助信息 从下列get用法信息可以看出 get 后面可以跟table表名,rowkey,以及column,value.但是如果想通过get直接获取一个表中的 ...

  6. HBase 伪分布式环境搭建及基础命令使用

    一.前提条件: (1)文件存储在HDFS文件系统之上.因此必须启动hadoop服务.(namenode,datanode,resourcemanager,nodemanager,historyserv ...

  7. 20145202马超 2006-2007-2 《Java程序设计》第3周学习总结

    20145202马超 2016-2017-2 <Java程序设计>第3周学习总结 教材学习内容总结 函数的重载:在同一个类中,允许存在一个以上的同名函数,只要他们的参数数目不同就可以.与返 ...

  8. c# string.format和tostring()

    字符 说明 示例 输出 C 货币 string.Format("{0:C3}", 2) $2.000 D 十进制 string.Format("{0:D3}", ...

  9. 洛谷P3958 奶酪

    题目链接 这道题貌似可以用BFS来写吧qwq. 我用的是并查集,把联通的洞合并在同一个几何中,最后只需要判断是否存在上表面和下表面有相同集合的洞即可. 但是需要注意的是还有这样的一种情况:有一个大洞贯 ...

  10. spring、spring-data-redis整合使用

    一.Redis是一个开源的使用ANSI C语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value数据库,并提供多种语言的API. 从2010年3月15日起,Redis的开发工作由VMwa ...