我们发现任何最优解都可以是所有拔高的右端点是n,然后如果我们确定了一段序列前缀的结尾和在此之前用过的拔高我们就可以直接取最大值了然后我们在这上面转移就可以了,然后最优解用二维树状数组维护就行了

#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 10005
#define K 505
#define M 5505
using namespace std;
inline int read()
{
int sum=;
char ch=getchar();
while(ch<''||ch>'')ch=getchar();
while(ch>=''&&ch<='')
{
sum=(sum<<)+(sum<<)+ch-'';
ch=getchar();
}
return sum;
}
inline int Max(int x,int y)
{
return x>y?x:y;
}
int f[N][K],a[N],n,k,b[M][K];
inline void push(int p,int y,int x)
{
for(int i=x;i<M;i+=i&(-i))
for(int j=y;j<=k+;j+=j&(-j))
b[i][j]=Max(p,b[i][j]);
}
inline int get_Max(int y,int x)
{
int ans=;
for(int i=x;i>;i-=i&(-i))
for(int j=y;j>;j-=j&(-j))
ans=Max(ans,b[i][j]);
return ans;
}
int main()
{
int ans=;
n=read(),k=read();
for(int i=;i<=n;i++)a[i]=read();
for(int i=;i<=n;i++)
for(int j=k;j>=;j--)
f[i][j]=get_Max(j+,a[i]+j+)+,push(f[i][j],j+,a[i]+j+),ans=Max(ans,f[i][j]);
printf("%d",ans);
return ;
}

[BZOJ3594] [Scoi2014]方伯伯的玉米田 二维树状数组优化dp的更多相关文章

  1. BZOJ 3594: [Scoi2014]方伯伯的玉米田 (二维树状数组优化DP)

    分析 首先每次增加的区间一定是[i,n][i,n][i,n]的形式.因为如果选择[i,j](j<n)[i,j](j<n)[i,j](j<n)肯定不如把后面的全部一起加111更优. 那 ...

  2. [Scoi2014]方伯伯的玉米田 二维树状数组+动态规划

    考试最后半个小时才做这道题.十分钟写了个暴力还写挂了..最后默默输出n.菜鸡一只. 这道题比较好看出来是动规.首先我们要明确一点.因为能拔高长度任意的一段区域,所以如果从i开始拔高,那么一直拔高到n比 ...

  3. BZOJ3594 SCOI2014方伯伯的玉米田(动态规划+树状数组)

    可以发现每次都对后缀+1是不会劣的.考虑dp:设f[i][j]为前i个数一共+1了j次时包含第i个数的LIS长度.则f[i][j]=max(f[i][j-1],f[k][l]+1) (k<i,l ...

  4. BZOJ3594: [Scoi2014]方伯伯的玉米田【二维树状数组优化DP】

    Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美. 这排玉米一共有N株,它们的高度参差不齐. 方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感 ...

  5. BZOJ3594 [Scoi2014]方伯伯的玉米田 【树状数组优化dp】

    题目链接 BZOJ3594 题解 dp难题总是想不出来,, 首先要观察到一个很重要的性质,就是每次拔高一定是拔一段后缀 因为如果单独只拔前段的话,后面与前面的高度差距大了,不优反劣 然后很显然可以设出 ...

  6. bzoj3594: [Scoi2014]方伯伯的玉米田

    dp新优化姿势... 首先,当我们拔高时,一定右端点是n最优.因为如果右端点是r,相当于降低了r之后玉米的高度.显然n更优. 那么可以dp.dp[i][j]表示前i个拔高j次的LIS.dp[i][j] ...

  7. bzoj3594: [Scoi2014]方伯伯的玉米田--树状数组优化DP

    题目大意:对于一个序列,可以k次选任意一个区间权值+1,求最长不下降子序列最长能为多少 其实我根本没想到可以用DP做 f[i][j]表示前i棵,操作j次,最长子序列长度 p[x][y]表示操作x次后, ...

  8. 2019.03.28 bzoj3594: [Scoi2014]方伯伯的玉米田(二维bit优化dp)

    传送门 题意咕咕咕 思路:直接上二维bitbitbit优化dpdpdp即可. 代码: #include<bits/stdc++.h> #define N 10005 #define K 5 ...

  9. SCOI2014 bzoj3594 方伯伯的玉米田(二维树状数组+dp)

    3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1971  Solved: 961[Submit][St ...

随机推荐

  1. Hadoop(7)-HDFS客户端的API操作

    1 客户端环境准备 根据自己电脑的操作系统拷贝对应的编译后的hadoop jar包到非中文路径 配置HADOOP_HOME的环境变量,并且在path中配置hadoop的bin 重启电脑 2. Hdfs ...

  2. 我是一个MySQL小白

    我是一个MySQL小白 第一回早起装扮 “mysql,Oracle,SQL-SERVER你们三个 起床没?”,清晨七点多师父喊道. “师父,我(mysql)哪敢睡觉呀,我还在查询表呢,有客户的密码忘记 ...

  3. python爬虫 爬取steam热销游戏

    好久没更新了啊...最近超忙 这学期学了学python 感觉很有趣 就写着玩~~~ 爬取的页面是:https://store.steampowered.com/search/?filter=globa ...

  4. Python3 函数参数

    # # 常规参数 # def jiafa(a,b): # print(a+b) # # jiafa(5,6) # # # def xinxi(name,location,sex='male'): # ...

  5. 线程基础三 使用C#中的lock关键词

    C#中lock关键字主要是为确保当一个线程使用某些资源时,同时无法其他线程无法使用该资源.下面我们看看下面的小例子. static void Main(string[] args) { var c = ...

  6. Hibernate-ORM:07.Hibernate中的参数绑定

    ------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥------------- 本篇博客会讲解Hibernate中的参数绑定,就是相当于sql语句中的where后面的条件 一,讲解概述: 1 ...

  7. ACE学习综述(1)

    1. ACE学习综述 1.1. ACE项目的优点 可以跨平台使用,基本上可以实现一次编写,多平台运行. ACE本身不仅仅是一个简单的网络框架,对于网络框架涉及到的进程管理.线程管理等系统本身相关的内容 ...

  8. ubuntu 把软件源修改为国内源

    国内有很多Ubuntu的镜像源,比如:阿里源.网易源等,还有很多教育网的源,比如:清华源.中科大源等. 这里以清华源为例讲解如何修改Ubuntu 18.04里面默认的源. 修改步骤 第一步:备份原始源 ...

  9. [Effective Java] 创建和销毁对象篇

    [Effective Java] 创建和销毁对象篇 1. 优先考虑用静态工厂方法代替构造器 优点: - 静态工厂方法相比于构造器,它们有名称 - 不需要每次在使用的时候创建一个对象 - 可以返回原返回 ...

  10. Python攻击

    python   DOS攻击 2版本 #!/usr/bin/env python import socket import time import threading #Pressure Test,d ...