561. Array Partition I【easy】
561. Array Partition I【easy】
Given an array of 2n integers, your task is to group these integers into n pairs of integer, say (a1, b1), (a2, b2), ..., (an, bn) which makes sum of min(ai, bi) for all i from 1 to n as large as possible.
Example 1:
Input: [1,4,3,2] Output: 4
Explanation: n is 2, and the maximum sum of pairs is 4 = min(1, 2) + min(3, 4).
Note:
- n is a positive integer, which is in the range of [1, 10000].
- All the integers in the array will be in the range of [-10000, 10000].
解法一:
class Solution {
public:
int arrayPairSum(vector<int>& nums) {
if (nums.empty()) {
return ;
} sort(nums.begin(), nums.end()); int sum = ;
for (int i = ; i < nums.size(); i += ) {
sum += nums[i];
} return sum;
}
};
为了不浪费元素,先排序,这样可以保证min加出来为max
比如[1, 9, 2, 4, 6, 8]
如果按顺序来的话,1和9就取1,2和4就取2,6和8就取6,显而易见并不是最大,原因就是9在和1比较的时候被浪费了,9一旦浪费就把8也给影响了,所以要先排序
@shawngao 引入了数学证明的方法,如下:
Let me try to prove the algorithm...
- Assume in each pair
i
,bi >= ai
. - Denote
Sm = min(a1, b1) + min(a2, b2) + ... + min(an, bn)
. The biggestSm
is the answer of this problem. Given1
,Sm = a1 + a2 + ... + an
. - Denote
Sa = a1 + b1 + a2 + b2 + ... + an + bn
.Sa
is constant for a given input. - Denote
di = |ai - bi|
. Given1
,di = bi - ai
. DenoteSd = d1 + d2 + ... + dn
. - So
Sa = a1 + a1 + d1 + a2 + a2 + d2 + ... + an + an + di = 2Sm + Sd
=>Sm = (Sa - Sd) / 2
. To get the maxSm
, givenSa
is constant, we need to makeSd
as small as possible. - So this problem becomes finding pairs in an array that makes sum of
di
(distance betweenai
andbi
) as small as possible. Apparently, sum of these distances of adjacent elements is the smallest. If that's not intuitive enough, see attached picture. Case 1 has the smallestSd
.
561. Array Partition I【easy】的更多相关文章
- 167. Two Sum II - Input array is sorted【easy】
167. Two Sum II - Input array is sorted[easy] Given an array of integers that is already sorted in a ...
- 167. Two Sum II - Input array is sorted【Easy】【双指针-有序数组求两数之和为目标值的下标】
Given an array of integers that is already sorted in ascending order, find two numbers such that the ...
- 1. Two Sum【easy】
1. Two Sum[easy] Given an array of integers, return indices of the two numbers such that they add up ...
- 26. Remove Duplicates from Sorted Array【easy】
26. Remove Duplicates from Sorted Array[easy] Given a sorted array, remove the duplicates in place s ...
- 88. Merge Sorted Array【easy】
88. Merge Sorted Array[easy] Given two sorted integer arrays nums1 and nums2, merge nums2 into nums1 ...
- 448. Find All Numbers Disappeared in an Array【easy】
448. Find All Numbers Disappeared in an Array[easy] Given an array of integers where 1 ≤ a[i] ≤ n (n ...
- 189. Rotate Array【easy】
189. Rotate Array[easy] Rotate an array of n elements to the right by k steps. For example, with n = ...
- 121. Best Time to Buy and Sell Stock【easy】
121. Best Time to Buy and Sell Stock[easy] Say you have an array for which the ith element is the pr ...
- 27. Remove Element【easy】
27. Remove Element[easy] Given an array and a value, remove all instances of that value in place and ...
随机推荐
- [Contest20180116]随机游走
题意:给一棵树,多次询问$a$到$b$期望步数,每一步都是随机的 对期望DP了解更深入了一些 先预处理$up_x$表示从$x$走到$fa_x$的期望步数 可以直接往上走,也可以先去儿子再回来,设$x$ ...
- 洛谷 P2066 机器分配
题目背景 Background 无 题目描述 Description 总公司拥有高效设备M台,准备分给下属的N个分公司.各分公司若获得这些设备,可以为国家提供一定的盈利.问:如何分配这M台设备才能 ...
- Android Studio 生成aar包多Module引用问题
问题描述: 有个arr文件被放到Module A中引用,现在Module B又依赖了Module A,则在编译过程中会发生错误,Module B找不到aar文件. 解决办法: 使用相对路径来找到这个a ...
- [测试技术分享]DNS域传送漏洞测试
DNS域传送漏洞测试 1.简介: DNS(Domain Name System)也叫域名管理系统,它它建立在一个分布式数据库基础之上,在这个数据库里,保存了IP地址和域名的相互映射关系.正因为DNS的 ...
- JavaEE学习路线图
http://www.cnblogs.com/gaoming7122/archive/2012/11/20/2778308.html
- Matlab设置字体大小
1. 设置坐标轴上下限:axis([xmin,xmax,ymin,ymax]); 2. 设置图片大小:set(gcf,'Position',[x1,y1,dx,dy]); x1和y1是图的左下角坐 ...
- Linux中线程的挂起与恢复(进程暂停)
http://www.linuxidc.com/Linux/2013-09/90156.htm 今天在网上查了一下Linux中对进程的挂起与恢复的实现,相关资料少的可怜,大部分都是粘贴复制.也没有完整 ...
- MythXinWCF通用宿主绿色版V1.1
更新内容:宿主的唯一编号和名称可以输入符号"."日志文本框增加滚动条,并且总是显示文本末端增加启动方式选择:1.手动启动 2.跟随系统启动 最新下载地址: http://pan.b ...
- [PATCH] ARM: add dtbImage.<dt> and dtbuImage.<dt> rules
转载: http://permalink.gmane.org/gmane.linux.kbuild.devel/8755 This rules are useful for appended devi ...
- C++中的模板学习
https://www.cnblogs.com/eleclsc/p/5918114.html