POJ_1284 Primitive Roots 【原根性质+欧拉函数运用】
一、题目
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.
Input
Output
Sample Input
23
31
79
Sample Output
10
8
24
二、题意分析
原根并不像百度介绍的那样,需要深入去研究。直接上干货,《初等数论及应用》(第六版)P260 定理9.5
如果正整数n有一个原根,那么它一共有φ(φ(n))个不同的原根。
对应该题目,因为给的p是奇素数,所以答案就是φ(p-1)。
三、代码
#include <iostream>
#include <cstring>
using namespace std; const int MAXN = 66000;
int Prime[MAXN], nPrime;
bool isPrime[MAXN]; void make_prime()
{
memset(isPrime, 1, sizeof(isPrime));
nPrime = 0;
isPrime[0] = isPrime[1] = 0;
for(int i = 2; i < MAXN; i++)
{
if(isPrime[i])
Prime[nPrime++] = i;
for(int j = 0; j < nPrime && (long long)i*Prime[j] < MAXN; j++)
{
isPrime[i*Prime[j]] = 0;
if(i%Prime[j] == 0)
break;
}
}
} int Euler(int p)
{
int ans = p;
for(int i = 0; Prime[i]*Prime[i] <= p ; i++)
{
if( p % Prime[i] == 0)
{
ans = ans - ans/Prime[i];
do
{
p /= Prime[i];
}while(p%Prime[i] == 0);
}
}
if(p > 1)
ans = ans - ans/p;
return ans;
} int main()
{
int p;
make_prime();
while( cin >> p )
{
cout << Euler(p-1) << endl;
}
return 0;
}
POJ_1284 Primitive Roots 【原根性质+欧拉函数运用】的更多相关文章
- 【poj 1284】Primitive Roots(数论--欧拉函数 求原根个数){费马小定理、欧拉定理}
题意:求奇质数 P 的原根个数.若 x 是 P 的原根,那么 x^k (k=1~p-1) 模 P 为1~p-1,且互不相同. (3≤ P<65536) 解法:有费马小定理:若 p 是质数,x^( ...
- poj 2480 Longge's problem 积性函数性质+欧拉函数
题意: 求f(n)=∑gcd(i, N) 1<=i <=N. 分析: f(n)是积性的数论上有证明(f(n)=sigma{1<=i<=N} gcd(i,N) = sigma{d ...
- Master of Phi (欧拉函数 + 积性函数的性质 + 狄利克雷卷积)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6265 题目大意:首先T是测试组数,n代表当前这个数的因子的种类,然后接下来的p和q,代表当前这个数的因 ...
- 欧拉函数&&欧拉定理
定义和简单性质 欧拉函数在OI中是个非常重要的东西,不知道的话会吃大亏的. 欧拉函数用希腊字母φ表示,φ(N)表示N的欧拉函数. 对φ(N)的值,我们可以通俗地理解为小于N且与N互质的数的个数(包含1 ...
- 欧拉函数(Euler_Function)
一.基本概述在数论,对正整数n,欧拉函数varphi(n)是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商 ...
- POJ1284 Primitive Roots [欧拉函数,原根]
题目传送门 Primitive Roots Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5434 Accepted: ...
- (Relax 数论1.8)POJ 1284 Primitive Roots(欧拉函数的应用: 以n为模的本原根的个数phi(n-1))
/* * POJ_2407.cpp * * Created on: 2013年11月19日 * Author: Administrator */ #include <iostream> # ...
- poj1284(欧拉函数+原根)
题目链接:https://vjudge.net/problem/POJ-1284 题意:给定奇素数p,求x的个数,x为满足{(xi mod p)|1<=i<=p-1}={1,2,...,p ...
- LightOJ1298 One Theorem, One Year(DP + 欧拉函数性质)
题目 Source http://www.lightoj.com/volume_showproblem.php?problem=1298 Description A number is Almost- ...
随机推荐
- SpringBoot:阿里数据源配置、JPA显示sql语句、格式化JPA查询的sql语句
1 数据源和JPA配置 1.1 显示sql配置和格式化sql配置 者两个配置都是属于hibernate的配置,但是springdatajpa给我们简化了:所有hibernate的配置都在jpa下面的p ...
- opencv3读取视频并保存为图片
#include <iostream> #include <vector> #include <opencv2/opencv.hpp> using namespac ...
- opennebula kvm 创建虚拟机错误
Thu Jul :: : Error executing image transfer script: Error copying localhost.localdomain:/app/openneb ...
- 面试题:try,catch,finally都有return语句时执行哪个 已看1
1.不管有木有出现异常,finally块中代码都会执行: return 先执行 把值临时存储起来, 执行完finally之后再取出来 值是不会改变的2.当try和catch中有return时,fina ...
- Qt5信号和槽机制
信号槽是 Qt 框架引以为豪的机制之一.熟练使用和理解信号槽,能够设计出解耦的非常漂亮的程序,有利于增强我们的技术设计能力. 所谓信号槽,实际就是观察者模式.当某个事件发生之后,比如,按钮检测到自己被 ...
- Linux extundelete命令
一.简介 extundelete的文件恢复工具,支持ext3/ext4双格式分区恢复. 二.安装 yum install -y e2fsprogs* e2fslibs* wget http://nch ...
- Django框架 之 form组件的钩子
Django框架 之 form组件的钩子 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3 ...
- 丢弃昂贵的Detours Professional 3.0,使用免费强大的EasyHook
我们要先看看微软官方的著名HOOK库: Detours Professional 3.0 售价:US$9,999.95 功能列表: Detours 3.0 includes the following ...
- jQuery中关于toggle的使用
<!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>t ...
- 挂载ISO 和 KILL 掉占用进程
mount -t iso9660 -o loop,user VMware-tools-linux-8.6.0-425873.iso /mnt/cdrom fuser -m -v -i -k /mnt ...