P1053Easy sssp

 
 

描述

输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,000)条边的带权有向图. 
要求你写一个程序, 判断这个有向图中是否存在负权回路. 如果从一个点沿着某条路径出发, 又回到了自己, 而且所经过的边上的权和小于0, 就说这条路是一个负权回路.
如果存在负权回路, 只输出一行-1;
如果不存在负权回路, 再求出一个点S(1 <= S <= N)到每个点的最短路的长度. 约定: S到S的距离为0, 如果S与这个点不连通, 则输出NoPath.

格式

输入格式

第一行: 点数N(2 <= N <= 1,000), 边数M(M <= 100,000), 源点S(1 <= S <= N);
以下M行, 每行三个整数a, b, c表示点a, b(1 <= a, b <= N)之间连有一条边, 权值为c(-1,000,000 <= c <= 1,000,000)

输出格式

如果存在负权环, 只输出一行-1, 否则按以下格式输出
共N行, 第i行描述S点到点i的最短路: 
如果S与i不连通, 输出NoPath;
如果i = S, 输出0;
其他情况输出S到i的最短路的长度.

样例1

样例输入1[复制]

 
6 8 1
1 3 4
1 2 6
3 4 -7
6 4 2
2 4 5
3 6 3
4 5 1
3 5 4

样例输出1[复制]

 
0
6
4
-3
-2
7

限制

Test5 5秒
其余 1秒

提示

做这道题时, 你不必为超时担心, 不必为不会算法担心, 但是如此“简单”的题目, 你究竟能ac么?

#include<cstdio>
#include<iostream>
#include<queue>
#include<cstring>
#define N 1010
#define M 100010
#define inf 9999999999999LL
#define LL long long
using namespace std;
int head[N],in[N],n,m,s;
LL dist[N],dis1[N];
struct node{
int v,next;
long long w;
}e[M];
bool flag,vis[N],use[N];
void add(int cnt,int x,int y,int z){
e[cnt].v=y;
e[cnt].w=z;
e[cnt].next=head[x];
head[x]=cnt;
}
void spfa(int so,LL dis[]){
queue<int>que;
dis[so]=;
vis[so]=;
use[so]=;
in[so]++;
que.push(so);
while(!que.empty()){
int u=que.front();que.pop();
vis[u]=;
for(int i=head[u];i;i=e[i].next){
if(dis[e[i].v]>dis[u]+e[i].w){
dis[e[i].v]=dis[u]+e[i].w;
if(!vis[e[i].v]){
vis[e[i].v]=;
use[e[i].v]=;
que.push(e[i].v);
if(++in[e[i].v]>=n||dis[so]<){
flag=;
return ;
}
} }
}
}
}
int main(){
//freopen("sh.txt","r",stdin);
scanf("%d%d%d",&n,&m,&s);
for(int i=;i<=m;i++){
int x,y;LL z;
scanf("%d%d%lld",&x,&y,&z);
add(i,x,y,z);
}
fill(dist,dist+n+,inf);
for(int i=;i<=n;i++){
if(use[i]) continue;
if(flag){
puts("-1");return ;
}
spfa(i,dis1);
}
spfa(s,dist);
if(flag){
puts("-1");return ;
}
for(int i=;i<=n;i++){
if(dist[i]<inf)
cout<<dist[i]<<endl;
else
printf("NoPath\n");
}
return ;
}

vijos 1053Easy sssp的更多相关文章

  1. vijos:P1053Easy sssp(spfa判环)

    描述 输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,000)条边的带权有向图. 要求你写一个程序, 判断这个有向图中是否存在负权回路. 如果从一 ...

  2. NOIP模板整理计划

    先占个坑 [update]noip结束了,弃了 一.图论 1.单源最短路 洛谷P3371 (1)spfa 已加SLF优化 #include <iostream> #include < ...

  3. noip的一些模板(参考了神牛的博客)

    一.图论 1.单源最短路 洛谷P3371 (1)spfa 已加SLF优化 419ms #include <iostream> #include <cstdio> #includ ...

  4. Vijos——T1053 Easy sssp

    https://vijos.org/p/1053 描述 输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,000)条边的带权有向图. 要求你写一个程 ...

  5. vijos 1053 Easy sssp

    描述 输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,000)条边的带权有向图. 要求你写一个程序, 判断这个有向图中是否存在负权回路. 如果从一 ...

  6. Easy sssp(vijos 1053)

    描述 输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,000)条边的带权有向图. 要求你写一个程序, 判断这个有向图中是否存在负权回路. 如果从一 ...

  7. SPFA_YZOI 1662: Easy sssp

    题目描述 输入数据给出一个有N(2  < =  N  < =  1,000)个节点,M(M  < =  100,000)条边的带权有向图.  要求你写一个程序,  判断这个有向图中是 ...

  8. vijosP1053 Easy sssp

    vijosP1053 Easy sssp 链接:https://vijos.org/p/1053 [思路] SPFA. 题目中的陷阱比较多,但是只要中规中矩的写SPFA诸如:s与负圈不相连,有重边的情 ...

  9. Easy sssp(spfa)(负环)

    vijos    1053    Easy sssp 方法:用spfa判断是否存在负环 描述 输入数据给出一个有N(2 <= N <= 1,000)个节点,M(M <= 100,00 ...

随机推荐

  1. perl学习笔记(3)—— 坑

    (1)用perl来ls一个目录: 写perl的时候,经常要调用到系统命令,perl有很多等价的函数可以用,但是,不小心任性了,就想用system来实现了,好吧,来个ls把,列出指定的一个目录,直接上代 ...

  2. Uva592 Island of Logic

      题意:神人鬼三个种族,神只说真话,鬼只说假话,人白天说真话,晚上说假话.根据对话内容区分种族和白天黑夜.  最多有A, B, C, D, E五个人 算法:枚举A, B, C, D, E的种族情况和 ...

  3. Slony-I的 RemoteWorker重试调查

    客户的问题是: 向Slony-I运行环境中,增加新的slaveDB节点的时候发生错误. log中反复出现错误,然后再重新开始(重新开始部分的log省略): CONFIG remoteWorkerThr ...

  4. TCP连接(Time_Wait、Close_Wait)说明

    修改Time_Wait和CLOSE_WAIT时间 修改Time_Wait参数的方法 (在服务端修改)Windows下在HKEY_LOCAL_MACHINE/SYSTEM/CurrentControlS ...

  5. SharedObject使用:在FluorineFx.net与Flex中使用共享对象维护在线用户列表实例【转】

    一.添加一个新的FluorineFx的服务类项目OnLineService,删除原有的Sample.cs,并添加一个用户类定义与一个ApplicationAdpater类:如下: /*-- User. ...

  6. 【Hybrid App】Hybrid App开发实战

    [引言]近年来随着移动设备类型的变多,操作系统的变多,用户需求的增加,对于每个项目启动前,大家都会考虑到的成本,团队成员, 技术成熟度,时间,项目需求等一堆的因素.因此,开发App的方案已经变得越来越 ...

  7. Microsoft Robotics Developer Studio 4

    Microsoft Robotics Developer Studio 4       Share   Language: English   Download Microsoft® Robotics ...

  8. js获取非行间样式/定义样式

    <!--DOCTYPE html--> <html> <head> <meta charset="utf-8" /> <sty ...

  9. cocos2dx-jsb 跨语言调用及第三方集成 - 过程记录

    1:C++中调用js方法: 问题:ios中当用户通过home键将游戏转入后台时,调用js中的暂停游戏方法: AppDelegate::applicationDidEnterBackground() 和 ...

  10. hash_map map

    什么时候需要用hash_map,什么时候需要用map? 总体来说,hash_map 查找速度会比map快,而且查找速度基本和数据数据量大小,属于常数级别;而map的查找速度是log(n)级别.并不一定 ...