题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1402

  一般的的大数乘法都是直接模拟乘法演算过程,复杂度O(n^2),对于这题来说会超时。乘法的过程基本就是等同于多项式相乘的过程,只是没有进位而已。对于这种问题我们需要转化然后用FFT求解。FFT是用来计算离散傅里叶变化(DFT)及其逆变换(IDFT)的快速算法,复杂度O(n*logn)。DFT有一个很重要的性质:时域卷积,频域乘积;频域乘积,时域卷积。那么什么是时域、频域、卷积、乘积呢?时域和频域是两种信号的分析方法,DFT可以把时域信号变化为频域信号。卷积就是作多项式乘法,乘积就是依次乘过去。如果单纯的用多项式表示法进行乘法运算,那么基本就没有优化的地方了,此时我们换一种多项式的表示方法:点值法。表示的就是n个“点-值”对的序列{(x0,y0),(x1,y1),...,(xn-1,yn-1)},yk满足yk=A(xk),A()多项式函数,其中xk的值是随便取的。点值法非常适合作乘法,只需要把对应位置的值乘起来就可以了,复杂度O(n),其实就是做一次乘积,前面的多项式是做一次卷积。那么我们的重点就是怎样快速的把多项式转换为“点值”表示法,如果单纯的带值进去,那么复杂度就是O(n^2),这个时候FFT就派上用场了,可以在O(n*logn)的时间内求出来。

  FFT用到了单位复根的概念,n次单位复根就是满足w^n=1的复数,n次单位复根刚好有n个:e^(2*PI*i*k/n),k=0,1,...,n-1,其中有e^(i*u)=cos(u)+i*sin(u)。n次单位复根有如下的一些引理:

    1.相消引理:对于任何整数n>=0,k>=0,d>0,有 

    2.折半引理:如果n>0为偶数,n个n次的单位复根的平方等于n/2个n/2次单位复根。公式表示为:

  FFT主要是用到了折半引理,对多项式进行分治运算,它用A(x)中偶数下标的系数与奇数下标的系数,分别定义了两个新的次数为n/2的多项式A[0](x)和A[1](x):

    A[0](x) = a0 + a2x + a4x^4 + ... +an-2x^(n/2-1)
    A[1](x) = a1 + a3x + a5x^4 + ... +an-1x^(n/2-1)

  那么A(x) = A[0](x^2) + xA[1](x^2)。

  我们把点值法中x0,x1,...,xn-1的值分别设为,根据折半引理,值的序列并不是由n个不同的值组成的,而是由n/2个n/2次单位复根所组成,每个根出现两次,那么我们就可以对表达式递归的求值了,复杂度O(nlogn)。把多项式用"点值”法表示的问题解决了,然后做一遍乘积就行了。最后就是把“点值”法求的一个向量f求逆就可以了,对应的过程就是IDFT,思想也是差不多的。。。

  FFT算法,网上模板很好找。。。

 //STATUS:C++_AC_171MS_7128KB
#include <functional>
#include <algorithm>
#include <iostream>
//#include <ext/rope>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cstring>
#include <cassert>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
using namespace std;
//#pragma comment(linker,"/STACK:102400000,102400000")
//using namespace __gnu_cxx;
//define
#define pii pair<int,int>
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1.0)
//typedef
typedef __int64 LL;
typedef unsigned __int64 ULL;
//const
const int N=;
const int INF=0x3f3f3f3f;
const int MOD=,STA=;
const LL LNF=1LL<<;
const double EPS=1e-;
const double OO=1e30;
const int dx[]={-,,,};
const int dy[]={,,,-};
const int day[]={,,,,,,,,,,,,};
//Daily Use ...
inline int sign(double x){return (x>EPS)-(x<-EPS);}
template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
template<class T> inline T Min(T a,T b){return a<b?a:b;}
template<class T> inline T Max(T a,T b){return a>b?a:b;}
template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
//End
//复数结构体
struct complex
{
double r,i;
complex(double _r = 0.0,double _i = 0.0)
{
r = _r; i = _i;
}
complex operator +(const complex &b)
{
return complex(r+b.r,i+b.i);
}
complex operator -(const complex &b)
{
return complex(r-b.r,i-b.i);
}
complex operator *(const complex &b)
{
return complex(r*b.r-i*b.i,r*b.i+i*b.r);
}
};
/*
* 进行FFT和IFFT前的反转变换。
* 位置i和 (i二进制反转后位置)互换
* len必须去2的幂
*/
void change(complex y[],int len)
{
int i,j,k;
for(i = , j = len/;i < len-; i++)
{
if(i < j)swap(y[i],y[j]);
//交换互为小标反转的元素,i<j保证交换一次
//i做正常的+1,j左反转类型的+1,始终保持i和j是反转的
k = len/;
while( j >= k)
{
j -= k;
k /= ;
}
if(j < k) j += k;
}
}
/*
* 做FFT
* len必须为2^k形式,
* on==1时是DFT,on==-1时是IDFT
*/
void FFT(complex y[],int len,int on)
{
change(y,len);
for(int h = ; h <= len; h <<= )
{
complex wn(cos(-on**PI/h),sin(-on**PI/h));
for(int j = ;j < len;j+=h)
{
complex w(,);
for(int k = j;k < j+h/;k++)
{
complex u = y[k];
complex t = w*y[k+h/];
y[k] = u+t;
y[k+h/] = u-t;
w = w*wn;
}
}
}
if(on == -)
for(int i = ;i < len;i++)
y[i].r /= len;
} char s1[N],s2[N];
int ans[N];
complex a[N],b[N]; int main(){
// freopen("in.txt","r",stdin);
int i,j,len1,len2,len;
while(~scanf("%s%s",s1,s2))
{
len1=strlen(s1);
len2=strlen(s2);
len=;
while(len<(len1<<) || len<(len2<<))len<<=;
for(i=;i<len1;i++)a[i]=complex(s1[len1-i-]-'',);
for(;i<len;i++)a[i]=complex(,);
for(i=;i<len2;i++)b[i]=complex(s2[len2-i-]-'',);
for(;i<len;i++)b[i]=complex(,); FFT(a,len,);
FFT(b,len,);
for(i=;i<len;i++)a[i]=a[i]*b[i];
FFT(a,len,-);
for(i=;i<len;i++)ans[i]=(int)(a[i].r+0.5);
len=len1+len2-;
for(i=;i<len;i++){
ans[i+]+=ans[i]/;
ans[i]%=;
}
for(i=len;ans[i]<= && i>;i--);
for(;i>=;i--)
printf("%d",ans[i]);
putchar('\n');
}
return ;
}

HDU-1402 A * B Problem Plus FFT(快速傅立叶变化)的更多相关文章

  1. hdu 1402 A * B Problem Plus FFT

    /* hdu 1402 A * B Problem Plus FFT 这是我的第二道FFT的题 第一题是完全照着别人的代码敲出来的,也不明白是什么意思 这个代码是在前一题的基础上改的 做完这个题,我才 ...

  2. HDU - 1402 A * B Problem Plus FFT裸题

    http://acm.hdu.edu.cn/showproblem.php?pid=1402 题意: 求$a*b$ 但是$a$和$b$的范围可以达到 $1e50000$ 题解: 显然...用字符串模拟 ...

  3. HDU 1402 A * B Problem Plus (FFT求高精度乘法)

    A * B Problem Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  4. HDU - 1402 A * B Problem Plus (FFT实现高精度乘法)

    题意:计算A*B,A,B均为长度小于50000的整数. 这是FFT在大整数相乘中的一个应用,我本来想用NTT做的,但NTT由于取模很可能取炸,所以base必须设得很小,而且效率也比不上FFT. A和B ...

  5. HDU 1402 A * B Problem Plus (FFT模板题)

    FFT模板题,求A*B. 用次FFT模板需要注意的是,N应为2的幂次,不然二进制平摊反转置换会出现死循环. 取出结果值时注意精度,要加上eps才能A. #include <cstdio> ...

  6. BZOJ 2179: FFT快速傅立叶

    2179: FFT快速傅立叶 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2923  Solved: 1498[Submit][Status][Di ...

  7. 【bzoj2179】FFT快速傅立叶 FFT模板

    2016-06-01  09:34:54 很久很久很久以前写的了... 今天又比较了一下效率,貌似手写复数要快很多. 贴一下模板: #include<iostream> #include& ...

  8. 【BZOJ 2179】 2179: FFT快速傅立叶 (FFT)

    2179: FFT快速傅立叶 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 3308  Solved: 1720 Description 给出两个n位 ...

  9. bzoj 2179: FFT快速傅立叶 -- FFT

    2179: FFT快速傅立叶 Time Limit: 10 Sec  Memory Limit: 259 MB Description 给出两个n位10进制整数x和y,你需要计算x*y. Input ...

随机推荐

  1. python List&Set&Dict交集、并集、差集

    1.python List交集.并集.差集 1). 获取两个list 的交集#方法一: a=[2,3,4,5] b=[2,5,8] tmp = [val for val in a if val in  ...

  2. MFC的dll中控制资源问题

    有程序EXE和DLL,其中DLL中有1个函数用来显示对话框,被EXE调用.当EXE和DLL都为Release或Debug时,没有任何问题,但EXE为Release.DLL为Debug时,就会出错.该D ...

  3. Binding to the Most Recent Visual Studio Libraries--说的很详细,很清楚

    Every version of Visual Studio comes with certain versions of the Microsoft libraries, such as the C ...

  4. Topo图

    http://blog.csdn.net/youfangyuan/article/details/8367398 http://joshuaxiao.iteye.com/blog/2224120 ht ...

  5. hdu 1730 Northcott Game 博弈论

    很简单的博弈论问题,可以转化为Nim 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> ...

  6. ???????????? no permissions

    1.一手鞋地址 google http://developer.android.com/tools/device.html 我处理的方法如下: 我的问题: android的版卡 在Ubuntu12.0 ...

  7. SaaS系列介绍之一: SaaS的前身ASP介绍

    1. 引言 未来将越来越不可预测,这是新经济最具挑战性的方面之一.商务和技术上的瞬息万变会产生变化,这既可以看作要防范的威胁,也可以看作应该欢迎的机遇.                         ...

  8. Java Web开发 之小张老师总结EL、JSP、Servlet变量

    EL 11 JSP 9 Servlet JSP类别 pageContext pageContext * 作用域 pageScope pageContext.getAttribute() * reque ...

  9. java使用redis

    1.redis和memecache这种缓存框架,都分为服务器端和客户端. 我们在项目中使用,相当于客户端,要引入客户端使用redis的jar包 首先你需要下载驱动包,下载 jedis.jar,确保下载 ...

  10. windows命令行编码与nodejs编码格式冲突的解决方式

    今天写一个工具,由于大部分人使用的机器都是windows,在和nodejs结合的时候出问题了. win命令行的编码格式是gbk,而nodejs支持的编码只有:utf8 ascii和base64,必须让 ...