Memcached source code analysis (threading model)--reference
Look under the start memcahced threading process
memcached multi-threaded mainly by instantiating multiple libevent, are a main thread and n workers thread is the main thread or workers thread all through the the libevent management network event, in fact, each thread is a separate libevent instance
The main thread is responsible for monitoring the client to establish a connection request and accept connections
workers thread to handle events such as read and write has established good connections
Look at general icon:
First look main data structures (thread.c):
- / * An item in the connection queue. * /
- typedef struct conn_queue_item CQ_ITEM;
- struct conn_queue_item {
- int sfd out of the;
- int init_state;
- The int event_flags;
- int read_buffer_size;
- int is_udp;
- CQ_ITEM * next;
- };
CQ_ITEM is actually the main thread accept returned package to establish a connection fd
- / * A connection queue. * /
- typedef struct conn_queue CQ;
- struct conn_queue {
- CQ_ITEM * head;
- CQ_ITEM * tail;
- pthread_mutex_t lock;
- pthread_cond_t cond;
- };
CQ is a CQ_ITEM the singly linked list
- typedef struct {
- pthread_t thread_id; / * unique ID of this thread * /
- struct event_base * base; / * libevent handle this thread uses * /
- struct event notify_event; / * listen event for notify pipe * /
- int notify_receive_fd; / * receiving end of notify pipe * /
- int notify_send_fd; / * sending end of notify pipe * /
- CQ new_conn_queue; / * queue of new connections to handle * /
- } LIBEVENT_THREAD;
Memcached thread structure package, you can see each thread contains a CQ queue, a notification pipe pipe
The instance event_base and a libevent
Another important structure is the most important for each network connection Package conn
- typedef struct {
- int sfd out of the;
- int State;
- struct event event;
- short which;
- The char * RBUF;
- ... / / Eliminating the status flag and read-write buf information
- } Conn;
memcached mainly through Settings / conversion connected to different states to handle the event (core function drive_machine)
See next thread initialization process:
The main function of the memcached.c, first initialized on the main thread libevent
- / * Initialize main thread libevent instance * /
- main_base = event_init ();
Then initialize all workers thread and start the startup process will be described in detail later
- / * Start up worker threads if MT mode * /
- thread_init (settings.num_threads, main_base);
Then the main thread calls (only analyze the the tcp situation, memcached support udp)
- server_socket (settings.port, 0)
This method encapsulates create listening socket bound address, set the non-blocking mode and register the listening socket
the libevent read event, a series of operations
Then the main thread calls
- / * Enter the event loop * /
- event_base_loop (main_base, 0);
At this time the main thread start libevent to accept the the external connection request, the entire start-up process is completed
Let's look at how to start thread_init all workers thread, look at the core code thread_init
- void thread_init (int nthreads, struct event_base * main_base) {
- / /. . . Omission
- threads = malloc (sizeof (LIBEVENT_THREAD) * nthreads);
- if (threads) {
- perror ("Can't allocate thread descriptors");
- Exit (1);
- }
- threads [0]. base = main_base;
- threads [0]. thread_id = pthread_self ();
- for (i = 0; i <nthreads; i + +) {
- int fds [2];
- if (pipe (fds)) {
- perror ("Can't create notify pipe");
- Exit (1);
- }
- threads [i notify_receive_fd = fds [0];
- threads [i]. notify_send_fd = the FDS [1];
- setup_thread (& threads [i]);
- }
- / * Create threads after we've done all the libevent setup. * /
- for (i = 1; i <nthreads; i + +) {
- create_worker (worker_libevent, & threads [i]);
- }
- }
threads statement
static LIBEVENT_THREAD * threads;
The thread_init first malloc thread space, and then the first threads as the main thread, the rest are workers thread is then created for each thread a pipe, this pipe is used as the main thread to inform the workers thread a new connection arrives
Following setup_thread for
- static void setup_thread (LIBEVENT_THREAD * me) {
- if (! me-> base) {
- me-> base = event_init ();
- if (! me-> base) {
- fprintf (stderr, "Can't allocate event base \ n");
- Exit (1);
- }
- }
- / * Listen for notifications from other threads * /
- event_set (& me-> notify_event, me-> notify_receive_fd,
- EV_READ | EV_PERSIST, thread_libevent_process, me);
- event_base_set (me-> base, & me-> notify_event);
- if (event_add (& me-> notify_event, 0) == -1) {
- fprintf (stderr, "Can't monitor libevent notify pipe \ n");
- Exit (1);
- }
- cq_init (& me-> new_conn_queue);
- }
the create setup_thread libevent instance of all workers thread (the libevent main thread instance has been established in the main function)
Since the threads before [0] base = main_base; first thread (the main thread) will not be here execution event_init ()
In this method, then is to register all workers thread pipe read end the libevent of read events, wait for the main thread last all workers CQ initialization
the create_worker actually is the real start of the thread pthread_create call worker_libevent method, this method is executed
event_base_loop start the thread libevent
Here we need to remember that each workers thread only data from the read end of the pipe in its own thread readable trigger, and call
thread_libevent_process methods
Look at this function
- static void thread_libevent_process (int fd, short which, void * arg) {
- LIBEVENT_THREAD * me = arg;
- CQ_ITEM * item;
- char buf [1];
- if (read (fd, buf, 1)! = 1)
- if (settings.verbose,> 0)
- fprintf (stderr, "Can't read from libevent pipe \ n");
- item = cq_peek (& me-> new_conn_queue);
- if (NULL! = item) {
- conn * c = conn_new (item-> sfd, item-> init_state, item-> event_flags,
- item-> read_buffer_size, item-> is_udp, me-> base);
- . . . / / Omitted
- }
- }
The fd function parameters pipe read end of the thread descriptor first 1 byte of the pipeline notification signal readout (this is necessary in the level trigger mode, if does not handle the event, it will be loop notification know the event to be treated)
the cq_peek from the thread CQ queue take the head of the queue a CQ_ITEM, this CQ_ITEM is thrown into the main thread in the queue, item-> SFD is already established connection descriptor, by conn_new function of the descriptor registration the libevent read event, me-> Base on behalf of a thread structure, that is the descriptor event processing the to this workersThreading, the most important elements of conn_new method is:
- the Conn * conn_new (const int SFD, const int init_state, const int event_flags
- const int read_buffer_size, const bool is_udp, struct event_base * base) {
- . . .
- event_set (& c-> event, sfd, event_flags, event_handler, (void *) c);
- event_base_set (base, & c-> event);
- c-> ev_flags = event_flags;
- if (event_add (& c-> event, 0) == -1) {
- the if (conn_add_to_freelist (c)) {
- conn_free (c);
- }
- perror ("event_add");
- return NULL;
- }
- . . .
- }
You can see the new connection is registered to an event (actually EV_READ | EV_PERSIST), processed by the current thread (because event_base here the workers thread)
When the connection readable data callback event_handler function, actually event_handler in the main call memcached core method drive_machine of
Finally, look at the main thread is how to notify workers thread to handle the new connection, the main thread libevent registered readable event listening socket descriptor word, that is, when to establish a connection request, the main thread will handle the callback function is also the event_handler readable event (in fact, the main thread is initialized by conn_new listening socket libevent)
Last look at the most central part of the memcached network event processing - drive_machine
Need to keep in mind is drive_machine perform multi-threaded environment, the main thread and the workers will executive drive_machine,
- static void drive_machine (conn * c) {
- bool stop = false;
- int SFD, flags = 1;
- socklen_t addrlen;
- struct sockaddr_storage addr;
- int res;
- assert (c! = NULL);
- while (! stop) {
- switch (c-> state) {
- case conn_listening:
- addrlen = sizeof (addr);
- if ((sfd = accept (c-> sfd, (struct sockaddr *) & addr, & addrlen)) == -1) {
- / / Save n error handling
- break;
- }
- if ((flags = fcntl (sfd, F_GETFL, 0)) <0 | |
- fcntl (sfd, F_SETFL, flags | O_NONBLOCK) <0) {
- perror ("setting O_NONBLOCK");
- close (SFD);
- break;
- }
- dispatch_conn_new (sfd, conn_read, EV_READ | EV_PERSIST,
- DATA_BUFFER_SIZE, false);
- break;
- case conn_read:
- the if (try_read_command, (c) = 0) {
- continue;
- }
- .... / / Omitted
- }
- }
First of all, less than in fact be the while loop misleading (most do java students will immediately think of a cycle of the loop) while usually to meet a
will break in the case, while taking into account the vertical trigger mode, you must read the error of EWOULDBLOCK
Closer to home, drive_machine mainly by the current connection state to determine the what, by to libevent registered callback after the read and write time are the core function, so we registered libevent event, while the event state is written to the conn structure libevent callback will the conn structure as an argument over the method parameter
the memcached connected through an enum declaration
- enum conn_states to {
- conn_listening, / ** the socket which listens for connections * /
- conn_read, / ** reading in a command line * /
- conn_write, / ** writing out a simple response * /
- conn_nread, / ** reading in a fixed number of bytes * /
- conn_swallow, / ** swallowing unnecessary bytes w / o storing * /
- conn_closing, / ** closing this connection * /
- conn_mwrite, / ** writing out many items sequentially * /
- };
Actual for case conn_listening: This is the main thread to deal with their own Workers threads never do this branch we see the main thread to accept calls
dispatch_conn_new (sfd, conn_read, EV_READ | EV_PERSIST, DATA_BUFFER_SIZE, false);
This function is to inform workers thread to see
- void dispatch_conn_new (int sfd, int init_state, int event_flags,
- int read_buffer_size, int is_udp) {
- CQ_ITEM * item = cqi_new ();
- int thread = (last_thread + 1)% settings.num_threads;
- last_thread = thread;
- item-> sfd = sfd;
- item-> init_state = init_state;
- item-> event_flags = event_flags;
- item-> read_buffer_size = read_buffer_size;
- item-> is_udp = is_udp;
- cq_push (& threads [thread]. new_conn_queue, item);
- MEMCACHED_CONN_DISPATCH (sfd, threads [thread]. Thread_id);
- if (write (threads [thread]. notify_send_fd, "", 1)! = 1) {
- perror ("Writing to thread notify pipe");
- }
- }
You can clearly see, the main thread first create a new CQ_ITEM, then select a thread through the round robin strategy
And cq_push this CQ_ITEM into the thread CQ queue, the corresponding workers thread is how do you know it
Is through this
write (threads [thread]. notify_send_fd, "", 1)
Write 1-byte data to this thread pipe, then the thread's the libevent immediate callback the thread_libevent_process method (already described above)
Then the thread remove the item, Register read time, when the data connection of that section will eventually callback drive_machine method, that is,
method case conn_read drive_machine: all workers deal with the main thread only processing conn_listening establish a connection to this
This part of the code is indeed more, can not all posted, please refer to the source code, the latest version 1.2.6, the province went to a lot of optimization such as, each CQ_ITEM is malloc will malloc a lot to reduce debris generation and so the details.
reference from:http://www.cprogramdevelop.com/408519/
Memcached source code analysis (threading model)--reference的更多相关文章
- Memcached source code analysis -- Analysis of change of state--reference
This article mainly introduces the process of Memcached, libevent structure of the main thread and w ...
- Golang Template source code analysis(Parse)
This blog was written at go 1.3.1 version. We know that we use template thought by followed way: fun ...
- Apache Commons Pool2 源码分析 | Apache Commons Pool2 Source Code Analysis
Apache Commons Pool实现了对象池的功能.定义了对象的生成.销毁.激活.钝化等操作及其状态转换,并提供几个默认的对象池实现.在讲述其实现原理前,先提一下其中有几个重要的对象: Pool ...
- Redis source code analysis
http://zhangtielei.com/posts/blog-redis-dict.html http://zhangtielei.com/assets/photos_redis/redis_d ...
- linux kernel & source code analysis& hacking
https://kernelnewbies.org/ http://www.tldp.org/LDP/lki/index.html https://kernelnewbies.org/ML https ...
- 2018.6.21 HOLTEK HT49R70A-1 Source Code analysis
Cange note: “Reading TMR1H will latch the contents of TMR1H and TMR1L counter to the destination”? F ...
- The Ultimate List of Open Source Static Code Analysis Security Tools
https://www.checkmarx.com/2014/11/13/the-ultimate-list-of-open-source-static-code-analysis-security- ...
- Top 40 Static Code Analysis Tools
https://www.softwaretestinghelp.com/tools/top-40-static-code-analysis-tools/ In this article, I have ...
- Source Code Reading for Vue 3: How does `hasChanged` work?
Hey, guys! The next generation of Vue has released already. There are not only the brand new composi ...
随机推荐
- 怎么找到MyEclipse->add struts capabilities
问:MyEclipse:我的工程右键可以MyEclipse->add struts capabilities之前有,后来不知怎么就没有了,谁知道怎么弄出来是struts 答:你已经add过一次了 ...
- java vm args
这个问题主要还是由这个问题 java.lang.OutOfMemoryError: Java heap space 引起的.第一次出现这样的的问题以后,引发了其他的问题.在网上一查可能是JAVA的堆栈 ...
- EntityFramework版本下载和更新
安装指定版本的Package(例如:EntityFramework 5.0): PM> Install-Package EntityFramework -ProjectName MusicSto ...
- system CPU占用率过高与91助手的关系
今天正在认真工作,忽然发现电脑越来越慢. 按 CTRL+ALT+DEL打开任务管理器看了下CPU使用率.其中system占用率居然达到了64%.不对劲儿,按照平时习惯,system根本占用了不要这么多 ...
- POJ 3208-Apocalypse Someday(数位dp)
题意:给定n,输出第n大包含666的数字. 分析:dp[i][j][k][l]表示 长度为i,当前位是否是6,前一位是否6,是否已经包含666,表示的数量,再用二分找出第n大的这样的数字. #incl ...
- Zabbix探索:Agent配置中Hostname错误引起的Agent.Ping报错
搭好了Zabbix_Server以后,添加了服务器本身和一台Windows的机器做测试,居然有这样的报警. Zabbix agent on zabbix_client is unreachable f ...
- 打印出从1到最大的n位十进制数
首先这一题会溢出,要考虑的大数问题.所以不能用简单的是int类型数来表示(32位无符号int 范围是0x00000000···0xFFFFFFFF),下面主要是非递归的实现代码,自己做了注释方便以后回 ...
- 2015长春 HDU 5531 Rebuild
题意:n个顶点组成的多边形能否形成正多边形? #include <cstdio> #include <cstring> #include <cmath> #incl ...
- r语言入门资料
最近有好多r语言的爱好者问我r语言的事情,在百度上简单的收一收,感觉都在扯淡,真正适合初学者入门的资料几乎没有,比如最开始用什么编辑器比较好,在哪下载,最开始学习的例子有什么? 在日本网站上反倒是找 ...
- 【转】Spark是基于内存的分布式计算引擎
Spark是基于内存的分布式计算引擎,以处理的高效和稳定著称.然而在实际的应用开发过程中,开发者还是会遇到种种问题,其中一大类就是和性能相关.在本文中,笔者将结合自身实践,谈谈如何尽可能地提高应用程序 ...