(转载)MatLab绘图
转载自:http://www.cnblogs.com/hxsyl/archive/2012/10/10/2718380.html
转载自:http://www.cnblogs.com/jeromeblog/p/3396494.html
plot选项:
一 基础功能
二维图形
一、 plot函数
① 函数格式:plot(x,y) 其中x和y为长度相同
坐标向量
函数功能:以向量x、y为轴,绘制曲线。
【例】 在区间0≤X≤2内,绘制正弦曲线y=sin(x)
其程序为:
x=0:pi/100:2*pi; %必须加上分号,否则x直接显示出来啦
y=sin(x); %必须加上分号,否则x直接显示出来啦
plot(x,y)
【例】在0≤x≤2区间内,绘制曲线 y=2e-0.5xcos(4πx)
程序如下:
x=0:pi/100:2*pi;
y=2*exp(-0.5*x).*cos(4*pi*x);
plot(x,y)
plot函数最简单的调用格式是只包含一个输入参数:
plot(x)
在这种情况下,当x是实向量时,以该向量元素的下标为横坐标,元素值为纵坐标画出一条连续曲线,这实际上是绘制折线图。
② 含多个输入参数的plot函数调用格式为: plot(x1,y1,x2,y2,…,xn,yn)
Ⅰ.当输入参数都为向量时,x1和y1,x2和y2,…,xn和yn分别组成一组向量对,每一组向量对的长度可以不同。每一向量对可以绘制出一条曲线,这样可以在同一坐标内绘制出多条曲线。
Ⅱ.当输入参数有矩阵形式时,配对的x,y按对应列元素为横、纵坐标分别绘制曲线,曲线条数等于矩阵的列数。
【例】同时绘制正、余弦两条曲线y1=sin(x)和
y2=cos(x),其程序为:
x=0:pi/100:2*pi;
y1=sin(x);
y2=cos(x);
plot(x,y1,x,y2)
或者
x=[0:0.5:360]*pi/180;
plot(x,sin(x),x,cos(x))
中间变量绘图
t=0:0.1:2*pi;
x=t.*sin(3*t); %.*表示点乘,*表示矩阵乘法
y=t.*sin(t).*sin(t);
plot(x,y);
【例】 分析下列程序绘制的曲线。
x1=linspace(0,2*pi,100);
x2=linspace(0,3*pi,100);
x3=linspace(0,4*pi,100);
y1=sin(x1);
y2=1+sin(x2);
y3=2+sin(x3);
x=[x1;x2;x3]';
y=[y1;y2;y3]';
plot(x,y,x1,y1-1)
③ 具有两个纵坐标标度的图形
在MATLAB中,如果需要绘制出具有不同纵坐标标度的两个图形,可以使用plotyy绘图函数。调用格式为:
plotyy(x1,y1,x2,y2)
其中x1,y1对应一条曲线,x2,y2对应另一条曲线。横坐标的标度相同,纵坐标有两个,左纵坐标用于x1,y1数据对,右纵坐标用于x2,y2数据对。
【例】用不同标度在同一坐标内绘制曲线
y1=0.2e-0.5xcos(4πx) 和
y2=2e - 0.5xcos(πx)
④ 图形保持
hold on/off命令控制是保持原有图形还是刷新原有图形,不带参数的hold命令在两种状态之间进行切换。
hold on:启动图形保持功能,当前坐标轴和图形都将保持,此后绘制的图形都将添加在这个图形之上,并且自动调整坐标轴的范围。
hold off:关闭图形保持功能。
hold :在hold on 和hold off命令之间进行切换。
【例】采用图形保持,在同一坐标内绘制曲线y1=0.2e-0.5xcos(4πx) 和y2=2e-0.5xcos(πx)。
程序如下:
x=0:pi/100:2*pi;
y1=0.2*exp(-0.5*x).*cos(4*pi*x);
plot(x,y1)
hold on
y2=2*exp(-0.5*x).*cos(pi*x);
plot(x,y2);
hold off
二、设置曲线样式格式:
MATLAB提供了一些绘图选项,用于确定所绘曲线的线型、颜色和数据点标记符号,它们可以组合使用。例如,“b-.”表示蓝色点划线,“y:d”表示黄色虚线并用菱形符标记数据点。当选项省略时,MATLAB规定,线型一律用实线,颜色将根据曲线的先后顺序依次。
调用格式为:plot(x1,y1,选项1,x2,y2,选项2,…,xn,yn,选项n)
要设置曲线样式可以在plot函数中加绘图选项,其调用格式为:
plot(x,y1,’cs’,...)
其中c表示颜色, s表示线型。
【例】 用不同线型和颜色重新绘制例2图形,其程序为:
x=0:pi/100:2*pi;
y1=sin(x);
y2=cos(x);
plot(x,y1,'go',x,y2,'b-.')
其中参数'go'和'b-.'表示图形的颜色和线型。g表示绿色,o表示图形线型为圆圈;b表示蓝色,-.表示图形线型为点划线。
【例】在同一坐标内,分别用不同线型和颜色绘制曲线y1=0.2e-0.5xcos(4πx) 和y2=2e-0.5xcos(πx),标记两曲线交叉点。
x=linspace(0,2*pi,1000);
y1=0.2*exp(-0.5*x).*cos(4*pi*x);
y2=2*exp(-0.5*x).*cos(pi*x);
k=find(abs(y1-y2)<1e-2);
%查找y1与y2相等点(近似相等)的下标
x1=x(k); %取y1与y2相等点的x坐标
y3=0.2*exp(-0.5*x1).*cos(4*pi*x1);
%求y1与y2值相等点的y坐标
plot(x,y1,x,y2,'k:',x1,y3,'bp');
三、图形标记
在绘制图形的同时,可以对图形加上一些说明,如图形名称、图形某一部分的含义、坐标说明等,将这些操作称为添加图形标记。
title(‘加图形标题’);当前轴的正上方居
中位置处输出文本作为标题
xlabel('加X轴标记');
ylabel('加Y轴标记');
text(X,Y,'添加文本');
函数中的说明文字,除使用标准的ASCII字符外,还可使用LaTeX格式的控制字符,这样就可以在图形上添加希腊字母、数学符号及公式等内容。例如,text(0.3,0.5,‘sin({\omega}t+{\beta})’)将得到标注效果sin(ωt+β)。
x=0:pi/100:2*pi;
y1=sin(x);
y2=cos(x);
plot(x,y1,'b*',x,y2,'r>');
title('绘制正弦,余弦函数');
% title(date);
xlabel('横轴');
ylabel('纵轴');
text(2,1,'正弦曲线');
text(1,0.6,'余弦曲线');
【例】 在坐标范围0≤X≤2π,-2≤Y≤2内重新绘制正弦曲线,其程序为:
x=linspace(0,2*pi,60);
%生成含有60个数据元素的向量X
y=sin(x);
plot(x,y);
axis ([0 2*pi -2 2]);
四、坐标控制
axis函数的调用格式为:
axis([xmin xmax ymin ymax zmin zmax])
axis函数功能丰富,常用的格式还有:
axis equal:纵、横坐标轴采用等长刻度。
axis square:产生正方形坐标系(缺省为矩形)。
axis auto:使用缺省设置。
axis off:取消坐标轴。
axis on:显示坐标轴。
给坐标加网格线用grid命令来控制。grid on/off命令控制是画还是不画网格线,不带参数的grid命令在两种状态之间进行切换。
给坐标加边框用box命令来控制。box on/off命令控制是加还是不加边框线,不带参数的box命令在两种状态之间进行切换。
五、加图例
给图形加图例命令为legend。该命令把图例放置在图形空白处,用户还可以通过鼠标移动图例,将其放到希望的位置。
格式:legend('图例说明','图例说明');
【例】 为正弦、余弦曲线增加图例,其程序为:
x=0:pi/100:2*pi;
y1=sin(x);
y2=cos(x);
plot(x,y1,x,y2, '--');
legend('sin(x)','cos(x)');
六、对函数自适应采样的绘图函数
fplot函数则可自适应地对函数进行采样,能更好地反应函数的变化规律。
fplot函数的调用格式为:
fplot(fname,lims,tol,选项)
其中fname为函数名,以字符串形式出现,lims为x,y的取值范围,tol为相对允许误差,其系统默认值为2e-3。选项定义与plot函数相同。
【例】用fplot函数绘制f(x)=cos(tan(πx))的曲线。
命令如下:
fplot('cos(tan(pi*x))',[ 0,1],1e-4)
或可先建立函数文件fct.m,其内容为:
function y=fct(x)
y=cos(tan(pi*x));
用fplot函数调用fct.m函数,其命令为:
fplot(‘fct’,[0 1])
七.极坐标图
polar函数用来绘制极坐标图,其调用格式为:
polar(theta,rho,选项)
其中theta为极坐标极角,rho为极坐标矢径,选项的内容与plot函数相似。
例 绘制r=sin(t)cos(t)的极坐标图,并标记数据点。
程序如下:
1 t=0:pi/50:2*pi;
2 r=sin(t).*cos(t);
3 polar(t,r,'-*');
八. 图形标记
title(‘加图形标题');
xlabel('加X轴标记');
ylabel('加Y轴标记');
text(X,Y,'添加文本');
Legend(‘sin(x)’);%加图例
绘制三维螺旋曲线
1 t=0:pi/50:10*pi;
2 x=sin(t),y=cos(t);
3 plot3(x,y,t);
4 title('helix'),text(0,0,0,'origin');
5 xlabel('sin(t)'),ylabel('cos(t)'),zlabel('t');
6 grid on;%加上虚线网格线可以更好的看到对应区间的值
九.绘制三维网格图。函数格式:mesh(x,y,z,c)
其中:x,y控制X和Y轴坐标
矩阵z是由(x,y)求得Z轴坐标
(x,y,z)组成三维空间的网格点
c用于控制网格点颜色
1 %绘制三维网格曲面图
2 x=[0:0.15:2*pi];
3 y=[0:0.15:2*pi];
4 z=sin(y')*cos(x); %矩阵相乘
5 mesh(x,y,z);
1 %画出由函数形成的立体网状图:
2 x=linspace(-2, 2, 25); % 在x轴上取25点
3 y=linspace(-2, 2, 25); % 在y轴上取25点
4 [xx,yy]=meshgrid(x,y); % xx和yy都是21x21的矩阵
5 zz=xx.*exp(-xx.^2-yy.^2); % 计算函数值,zz也是21x21的矩阵
6 mesh(xx, yy, zz); % 画出立体网状图
十.surf函数
绘制三维曲面图,各线条之间的补面用颜色填充。surf函数和mesh函数的调用格式一致。
函数格式: surf (x,y,z)
其中x,y控制X和Y轴坐标,矩阵z是由x,y求得的曲面上Z轴坐标。
1 % 绘制三维曲面图
2 x=[0:0.15:2*pi];
3 y=[0:0.15:2*pi];
4 z=sin(y')*cos(x); %矩阵相乘
5 surf(x,y,z);
1 %剔透玲珑球
2 [X0,Y0,Z0]=sphere(30); %产生单位球面的三维坐标
3 X=2*X0;Y=2*Y0;Z=2*Z0; %产生半径为2的球面的三维坐标,若加上常数则是圆心
4 surf(X0,Y0,Z0); %画单位球面
5 shading interp %采用插补明暗处理
6 hold on; mesh(X,Y,Z);hold off %画外球面
7 hidden off %产生透视效果
8 axis off %不显示坐标轴
1 %卫星返回地球的运动轨线示意。
2 R0=1; %以地球半径为一个单位
3 a=12*R0;b=9*R0;T0=2*pi; %T0是轨道周期
4 T=5*T0;dt=pi/100;t=[0:dt:T]';f=sqrt(a^2-b^2); %地球与另一焦点的距离
5 th=12.5*pi/180; %卫星轨道与x-y平面的倾角
6 E=exp(-t/20); %轨道收缩率
7 x=E.*(a*cos(t)-f);y=E.*(b*cos(th)*sin(t));z=E.*(b*sin(th)*sin(t));
8 plot3(x,y,z,'g') %画全程轨线
9 [X,Y,Z]=sphere(30);X=R0*X;Y=R0*Y;Z=R0*Z; %获得单位球坐标
10 grid on,hold on,surf(X,Y,Z),shading interp %画地球
11 x1=-18*R0;x2=6*R0;y1=-12*R0;y2=12*R0;z1=-6*R0;z2=6*R0;
12 axis([x1 x2 y1 y2 z1 z2]) %确定坐标范围
13 view([117 37]),comet3(x,y,z,0.02),hold off %设视角、画运动轨线
十一.等高线图
1 %多峰函数peaks的等高线图
2 [x,y,z]=peaks(30);%产生一个凹凸有致的曲面,包含了三个局部极大点及三个局部极小点
3 contour3(x,y,z,16);
4 xlabel('x-axis'),ylabel('y-axis'),zlabel('z-axis');
5 title('contour3 of peaks')
十二.动画设计
1 %动画功能函数:getframe、moviein和movie
2 %播放一个不断变化的眼球程序。
3 m=moviein(20); %建立一个20个列向量组成的矩阵
4 for j=1:20
5 plot(fft(eye(j+10))) %绘制出每一幅眼球图并保存到m矩阵中
6 m(:,j)=getframe;
7 end
8 movie(m,10);%以每秒10幅的速度播放画面
二 高级功能
图形是呈现数据的一种直观方式,在用Matlab进行数据处理和计算后,我们一般都会以图形的形式将结果呈现出来。尤其在论文的撰写中,优雅的图形无疑会为文章加分。本篇文章非完全原创,我的工作就是把见到的Matlab绘图代码收集起来重新跑一遍,修改局部错误,然后将所有的图贴上来供大家参考。大家可以先看图,有看中的可以直接把代码Copy过去改成自己想要的。
<br>%% 直方图图的绘制
%直方图有两种图型:垂直直方图和水平直方图。而每种图型又有两种表现模式:累计式:分组式。
figure;
z=[3,5,2,4,1;3,4,5,2,1;5,4,3,2,5]; % 各因素的相对贡献份额
colormap(cool);% 控制图的用色
subplot(2,3,1);
bar(z);%二维分组式直方图,默认的为'group'
title('2D default');
subplot(2,3,2);
bar3(z);%三维的分组式直方图
title('3D default');
subplot(2,3,3);
barh(z,1);%分组式水平直方图,宽度设置为1
title('vert width=1');
subplot(2,3,4);
bar(z,'stack');%累计式直方图,例如:1,1+2,1+2+3构成了第一个bar
title('stack')
subplot(2,3,5);
bar3h(z,0.5,'stacked');%三维累计式水平直方图
title('vert width=1 stack');
subplot(2,3,6);
bar3(z,0.8,'grouped');%对相关数据的颜色进行分组,默认的位'group'
title('width=0.8 grouped');
%% =========柱状图的进阶==========
figure;
y=[300 311;390 425; 312 321; 250 185; 550 535; 420 432; 410 520;];
subplot(1,3,1);
b=bar(y);
grid on;
set(gca,'XTickLabel',{'0','1','2','3','4','5','6'})
legend('算法1','算法2');
xlabel('x axis');
ylabel('y axis');
%使仅有的一组柱状图呈现不同颜色,默认的位相同颜色
data = [1.0, 1.0, 0.565, 0.508, 0.481, 0.745];
subplot(1,3,2);
b = bar(data);
ch = get(b,'children');
set(ch,'FaceVertexCData',[4;2;3;1;5;6]);%使用Indexed形式指定每组bar的颜色
set(gca,'XTickLabel',{'C0','C1','C2','C3','C4','C5'})
axis([0 7 0.0 1.0]);
ylabel('micro F-measure');
%使每个bar颜色不同,默认的是每个元素在不同组的颜色相同
data = [3, 7, 5, 2;4, 3, 2, 9;6, 6, 1, 4];
subplot(1,3,3);
b = bar(data);
ch = get(b,'children');
set(ch{1},'FaceVertexCData',[1;2;3]);%设置第一个元素在不同组的颜色
set(ch{2},'FaceVertexCData',[1;2;3]);%设置第二个元素在不同组的颜色
set(ch{3},'FaceVertexCData',[1;2;3]);
set(ch{4},'FaceVertexCData',[1;2;3]);
%% 彩色柱状图
%用到的数据
n = 8;
Z = rand(n,1);
figure;
%默认图片
subplot(1,3,1);
bar(Z);
%简单的作图
% 这个图根据数据列中值的大小着色。每列中的值越大,颜色越突出
subplot(1,3,2);
h=bar(Z);
colormap(summer(n));
ch = get(h,'Children');
fvd = get(ch,'Faces');%针对矩阵时,只能用fvd=get(ch{col},'Faces'),下同
fvcd = get(ch,'FaceVertexCData');
[~, izs] = sortrows(Z,1);
for i = 1:n
row = izs(i);
fvcd(fvd(row,:)) = i;
end
set(ch,'FaceVertexCData',fvcd)
%图片会以渐变的方式着色,效果非常不错
subplot(1,3,3);
h=bar(Z);
ch = get(h,'Children');
fvd = get(ch,'Faces');
fvcd = get(ch,'FaceVertexCData');
[zs, izs] = sortrows(Z,1);
k = 128; % 准备生成128 *3 行的colormap
colormap(summer(k)); % 这样会产生一个128 * 3的矩阵,分别代表[R G B]的值
% 检视数据
whos ch fvd fvcd zs izs
% Name Size Bytes Class Attributes
%
% ch 1x1 8 double
% fvcd 66x1 528 double
% fvd 13x4 416 double
% izs 13x1 104 double
% zs 13x1 104 double
%
shading interp % Needed to graduate colors
for i = 1:n
color = floor(k*i/n); % 这里用取整函数获得color在colormap中行
row = izs(i); % Look up actual row # in data
fvcd(fvd(row,1)) = 1; % Color base vertices 1st index
fvcd(fvd(row,4)) = 1;
fvcd(fvd(row,2)) = color; % Assign top vertices color
fvcd(fvd(row,3)) = color;
end
set(ch,'FaceVertexCData', fvcd); % Apply the vertex coloring
set(ch,'EdgeColor','k');
%% 绘制统计直方图
%hist(y):如果y是向量,则把其中元素放入10个条目中,且返回每条中的元素的个数;如果y为矩阵,则分别对每列进行处理,显示多组条形。
%[n,xout]=hist(y,x):非递减向量x的指定bin的中心。向量xout包含频率计数与条目的位置。
x=-10:.1:10;
y1=randn(2008,1);
y2=randn(2008,3);
figure;
colormap(winter);
subplot(2,2,1);
hist(y1);%把其中元素放入10个条目中
title('y1为向量,default,n=10');
subplot(2,2,2);
hist(y2);%分别对每列进行处理,显示多组条形
title('y2为矩阵');
subplot(2,2,3);
hist(y1,x);%用户也可以使用[n,xout]=hist(y1,x);bar(xout,n)绘制条形直方图
title('向量x指定条目');
subplot(2,2,4);
hist(y2,1000);%第二个参数为标量时指定bin的数目
title('nbins=1000');
%% ========均值方差直方图========
a=[8 9 10 7 8 9];%mean
b=[1 1 1 1 1 1];%std
figure();
h=bar(a);
ch=get(h,'children');
set(ch,'FaceVertexCData',[4;2;3;1;5;6]);%使用Indexed形式指定每组bar的颜色
hold on;
errorbar(a,b,'k','LineStyle','none');
%% =======散点图scatter , scatter3 , plotmatrix======
%scatter3(X,Y,Z,S,C):在由向量X、Y和Z指定的位置显示大小和颜色分别由S和C决定的离散点
figure;
[x,y,z] = sphere(16);
X = [x(:)*.5 x(:)*.75 x(:)];
Y = [y(:)*.5 y(:)*.75 y(:)];
Z = [z(:)*.5 z(:)*.75 z(:)];
S = repmat([10 2 5]*10,numel(x),1);
C = repmat([1 2 3],numel(x),1);
subplot(1,2,1);
scatter(X(:),Y(:),S(:),C(:));
title('scatter');
subplot(1,2,2);
scatter3(X(:),Y(:),Z(:),S(:),C(:),'filled'), view(-60,60);
title('scatter3');
%plotmatrix(X,Y)绘出X(p*M)与Y(p*N)的列组成的散度图(N,M)
figure;
X=randn(100,2);Y=randn(100,2);
subplot(1,3,1),plotmatrix(X);%等价于plotmatrix(X,X),除了对角上的图为X每一列的直方图hist(X(:,col))
title('plotmatrix(X)');
subplot(1,3,2),plotmatrix(X,X);
title('plotmatrix(X,X)');
subplot(1,3,3),plotmatrix(X,Y);
title('plotmatrix(X,Y)');
%% =========绘制区域图===========
%区域图特点是:在图上绘制多条曲线时,每条曲线(除第一条外)都是把“前”条曲线作基线,再取值绘制而成。因此,该指令所画的图形,能醒目地反映各因素对最终结果的贡献份额。
figure;
x=1:2:9;% 注意:自变量要单调变化
y=magic(5);% 各因素的相对贡献份额,每一列相当于一个因素
colormap(spring);% 控制图的用色
area(x,y,4);%area(y)则以列下标作为自变量,第三个参数为基准线(默认为0)
set(gca,'layer','top');%图层设置为top层,显示网格
title('basevalue=4');
legend(' 因素 A',' 因素 B',' 因素 C','因素D','因素E');
grid on;
%% =========绘制饼状图=========
%饼图指令pie和pie3用来表示各元素占总和的百分数。该指令第二个参数为与第一参数等长的 0-1
%向量,1使对应扇块突出。第三个参数指定个扇区的label
figure;
colormap(summer);% 控制图的用色
x=[16 17 21 25 21];
subplot(1,2,1);
pie(x,[0 0 0 0 1],{'0-10岁儿童','10-20岁儿童','20-35岁青年','35-55岁中年','55岁以上老年'});
subplot(1,2,2);
pie3(x,[0 0 0 0 1],{'0-10岁儿童','10-20岁儿童','20-35岁青年','35-55岁中年','55岁以上老年'});
%% 绘制填色多边形。若每列的首尾元素不重合,则将默认把最后一点与第一点相连,强行使多边形封闭。
%fill和fill3用于绘制填色多边形
%fill(X1,Y1,C1,X2,Y2,C2,...)
%fill3(X1,Y1,Z1,C1,X2,Y2,Z2,C2,...)
%参数1和2为等长向量时,多边形的节点数由项链长度决定;而当其为矩阵时,每一列对应一个多边形
%参数3为颜色(用颜色字符r/g/b/c或[r g b]表示)
figure;
colormap(autumn);% 控制图的用色
n=10; % 多边形的边数
dt=2*pi/n;t=0:dt:2*pi;
t=[t,t(1)]; %fill 指令要求数据向量的首位重合,使图形封闭。
x=sin(t);y=cos(t);
subplot(1,2,1);
fill(x,y,[1 1 0]);axis off % 画填色多边形,隐去坐标轴。
X=[0.5 0.5 0.5 0.5;0.5 0.5 0.5 0.5;0 1 1 0];
Y=[0.5 0.5 0.5 0.5;0.5 0.5 0.5 0.5;0 0 1 1];
Z=[1 1 1 1;0 0 0 0;0 0 0 0];
C=[1 0 0 1;0 1 0 1;0 0 1 0];
subplot(1,2,2);
fill3(X,Y,Z,C);
view([-10 55]);
xlabel('x'),ylabel('y');box on;grid on;
%% =======绘制离散数据杆状图===========
%stem和stem3函数用于绘制二维或三维的离散数据杆状图
%stem(Y)可以理解成绘制离散点的plot(y)函数
%stem(X,Y)可以理解成绘制离散点的plot(x,y)函数
%stem(...,'filled')改变数据点显示的空、实状态。
%stem(...,'LINESPEC')Linespec代表直线属性设置参量。
x=1:.1:10;
y=exp(x.*sin(x));
figure;
subplot(1,3,1);
plot(x,y,'.-r');
title('plot(x,y)');
subplot(1,3,2);
stem(x,y,'b');
subplot(1,3,3);
stem(x,y,':g','fill');
%绘制三维离散杆状图
th=(0:127)/128*2*pi;% 角度采样点
x=cos(th);
y=sin(th);
f=abs(fft(ones(10,1),128)); %对离散方波进行 FFT 变换,并取幅值
stem3(x,y,f','cd','fill');%绘制图形
view([-65 30]);
xlabel('Real'); %图形标注
ylabel('Imaginary');
zlabel('Amplitude');
title('FFT example');
%% =======绘制方向和速度矢量图=======
%compass-绘制罗盘图
%feather-绘制羽毛图
%quiver-绘制二维箭头图
%quiver3-绘制三维箭头图 %绘制罗盘图
figure;
wdir=[45 90 90 45 360 335 360 270 335 270 335 335];
knots=[6 6 8 6 3 9 6 8 9 10 14 12];
rdir=wdir*pi/180;
[x,y]=pol2cart(rdir,knots);% 极坐标转化为直角坐标
compass(x,y);
title('风向和风力')
%绘制羽毛图
figure;
alpha=90:-10:0;
r=ones(size(alpha));
m=alpha*pi/180;
n=r*10;
[u,v]=pol2cart(m,n);% 极坐标转化为直角坐标
feather(u,v);
title('羽毛图')
%罗盘图和羽毛图的比较
figure;
t=-pi/2:pi/12:pi/2; % 在 区间,每 取一点。
r=ones(size(t)); % 单位半径
[x,y]=pol2cart(t,r); % 极坐标转化为直角坐标
subplot(1,2,1),compass(x,y),title('Compass')
subplot(1,2,2),feather(x,y),title('Feather')
%绘制箭头图
figure;
[x,y] = meshgrid(-2:.2:2,-1:.15:1);
z = x .* exp(-x.^2 - y.^2);
[px,py] = gradient(z,.2,.15);
subplot(1,2,1);
contour(x,y,z), hold on
quiver(x,y,px,py), hold off, axis image
title('quiver示例');
[x,y,z]=peaks(15);
[nx,ny,nz]=surfnorm(x,y,z);%surfnorm求平面的法向量
subplot(1,2,2)
surf(x,y,z);
hold on;
quiver3(x,y,z,nx,ny,nz);
title('quiver3示例');
%% ==========轮廓线图的绘制==========
%clabel-利用轮廓矩阵生成标签并在当前图形中显示
%contour-利用矩阵所给的值生成二维轮廓线
%contour3-利用矩阵所给的值生成三维轮廓线
%contourf-显示二维轮廓图并用色彩填充个轮廓线的间隙
%contourc-计算被其他轮廓函数占用的轮廓矩阵的低层函数
[x,y,z]=peaks;
n=15;% 等高线分级数
figure;
subplot(1,3,1);
h=contour(x,y,z,n);%绘制20条等高线
clabel(h);%当前图形中显示标签,标签前有'+'号且标签会根据轮廓线旋转,每条轮廓线仅有一个标签
title('simple contour,n=20');
subplot(1,3,2);
z=peaks;
[c,h]=contour(z,n);%绘制15条等高线
clabel(c,h);%标签前无'+'号,每天轮廓线可能有多个标签
title('调用clabel函数标注轮廓图')
subplot(1,3,3);
z=peaks;
[c,h]=contourf(z,n);
clabel(c,h,'FontSize',15,'Color','r','Rotation',0);%自定义标签
colorbar;
title('使用自定义标注并彩色填充轮廓线的间隙');
%% ========= Voronoi图和三角剖分========
%用Voronoi多边形勾画每个点的最近邻范围。Voronoi多边形在计算几何、模式识别中有重要应用。三角形顶点所在多边形的三条公共边是剖分三角形边的垂直平分线。
n=30;
A=rand(n,1)-0.5;
B=rand(n,1)-0.5; % 产生 30 个随机点
T=delaunay(A,B); % 求相邻三点组
T=[T T(:,1)]; %为使三点剖分三角形封闭而采取的措施
voronoi(A,B) % 画 Voronoi 图
hold on;axis square
fill(A(T(10,:)),B(T(10,:)),'y'); % 画一个剖分三角形
voronoi(A,B) % 重画 Voronoi 图,避免线被覆盖
title('Voronoi图和三角剖分');
%% =========三角网线和三角曲面图========
figure;
X=6*pi*(rand(20,10)-0.5);Y=6*pi*(rand(20,10)-0.5);
R=sqrt(X.^2+Y.^2)+eps;Z=sin(R)./R;
tri=delaunay(X,Y); % 进行三角剖分
subplot(1,2,1),trimesh(tri,X,Y,Z);
title('三角网线');
subplot(1,2,2),trisurf(tri,X,Y,Z);
title('三角曲面图');
colormap(copper);brighten(0.5) % 增强亮度
%% ============彩带图ribbon========
%ribbon(X,Y,WIDTH)和plot(X,Y)一样的,只不过每一列在三维中以分开的ribbon绘制
figure;
x=0:pi/100:2*pi;
x=repmat(x',1,10);
y=sin(x);
ribbon(x,y,0.4);% 画彩带图
% 至此彩带图已经生成。以下指令都是为了使图形效果更好、标识更清楚而用。
view([150,50]),shading interp,colormap(hot)% 设置视角、明暗、色图
light,lighting phong,box on % 设置光源、照射模式、坐标框
%% ==========在特殊坐标系中绘制特殊图形。=======
%利用polar函数在极坐标系中绘制图形
figure;
theta=0:.1:pi;
rho1=sin(theta);
rho2=cos(theta);
subplot(1,3,1);
polar(theta,rho1,'.-r');
hold on;
polar(theta,rho2,'--g');
title('极坐标系中绘图');
%另外一种和极坐标有关系的坐标系就是柱坐标系了
theta=0:pi/100:3*pi;
rho=sin(theta)+cos(theta);
[t,r]=meshgrid(theta,rho);
z=r.*t;
subplot(1,3,2);
[x,y,z]=pol2cart(t,r,z);%极坐标系向柱坐标系转化
mesh(x,y,z);%柱坐标系中进行绘图
title('柱坐标系中绘图');
view([-65 30]);
%将球坐标系转换为柱面坐标系
subplot(1,3,3);
delta=pi/100;
theta=0:delta:pi; % theta is zenith angle
phi=0:delta:pi; % phi is azimuth angle
[t p]=meshgrid(theta,phi);
r=ones(size(t));
[x,y,z]=sph2cart(t,p,r);%球坐标向柱坐标转化
mesh(x,y,z);%球坐标系中进行绘图
title('球坐标系中绘图');
%% ======四维表现========
%用色彩表现函数的特征
%当三维网线图、曲面图的第四个输入宗量取一些特殊矩阵时,色彩就能表现或加强函数的某特征,如梯度、曲率、方向导数等。
x=3*pi*(-1:1/15:1);y=x;[X,Y]=meshgrid(x,y);
R=sqrt(X.^2+Y.^2)+eps;Z=sin(R)./R;
[dzdx,dzdy]=gradient(Z);dzdr=sqrt(dzdx.^2+dzdy.^2); % 计算对 r 的全导数
dz2=del2(Z); % 计算曲率
figure;
subplot(1,2,1),surf(X,Y,Z),title('No. 1 surf(X,Y,Z)');
shading faceted,colorbar( 'horiz') ,brighten(0.2);
subplot(1,2,2),surf(X,Y,Z,R),title('No. 2 surf(X,Y,Z,R)');
shading faceted;colorbar( 'horiz');
%色彩分别表现函数的高度和半径特征
figure;
subplot(1,2,1),surf(X,Y,Z,dzdx) ;
shading faceted;brighten(0.1);colorbar( 'horiz');
title('No. 3 surf(X,Y,Z,dzdx)');
subplot(1,2,2),surf(X,Y,Z,dzdy);
shading faceted;colorbar( 'horiz');
title('No. 4 surf(X,Y,Z,dzdy)');
%色彩分别表现函数的 x 方向和 y 方向导数特征
figure;
subplot(1,2,1),surf(X,Y,Z,abs(dzdr)) ;
shading faceted;brighten(0.6);colorbar( 'horiz');
title('No. 5 surf(X,Y,Z,abs(dzdr))');
subplot(1,2,2),surf(X,Y,Z,abs(dz2));
shading faceted;colorbar( 'horiz');
title('No. 6 surf(X,Y,Z,abs(dz2))');
%% ======切片图和切片等位线图=======
%利用 slice 和 contourslice 表现 MATLAB 提供的无限大水体中水下射流速度数据 flow 。 flow 是一组定义在三维空间上的函数数据。
%在本例中,从图中的色标尺可知,深红色表示“正速度”(向图的左方),深蓝表示“负速度”(向图的右方)。
% 以下指令用切面上的色彩表现射流速度
[X,Y,Z,V]=flow; % 取 4 个 的射流数据矩阵, V 是射流速度。
x1=min(min(min(X)));x2=max(max(max(X))); % 取 x 坐标上下限
y1=min(min(min(Y)));y2=max(max(max(Y))); % 取 y 坐标上下限
z1=min(min(min(Z)));z2=max(max(max(Z))); % 取 z 坐标上下限
sx=linspace(x1+1.2,x2,5); % 确定 5 个垂直 x 轴的切面坐标
sy=0; % 在 y=0 处,取垂直 y 轴的切面
sz=0; % 在 z=0 处,取垂直 z 轴的切面
figure;
slice(X,Y,Z,V,sx,sy,sz); % 画切片图
view([-12,30]);shading interp;colormap jet;axis off;colorbar;
% 以下指令用等位线表现射流速度
v1=min(min(min(V)));v2=max(max(max(V))); % 射流速度上下限
cv=linspace(v1,v2,15); % 在射流上下限之间取 15 条等位线
figure;
contourslice(X,Y,Z,V,sx,sy,sz,cv);view([-12,30]);
colormap jet;colorbar;box on;
下面两段程序均不便上图,自己拿到Matlab里面运行一下看效果吧。
%% =======动态图形=========
%简单二维示例-彗星状轨迹图
figure;
n=10;t=n*pi*(0:0.0005:1);x=sin(t);y=cos(t);
plot(x,y,'g');axis square;hold on
comet(x,y,0.01);hold off
%卫星返回地球的运动轨线示意
figure;
R0=1; % 以地球半径为一个单位
a=12*R0;b=9*R0;T0=2*pi; %T0 是轨道周期
T=5*T0;dt=pi/100;t=[0:dt:T]';
f=sqrt(a^2-b^2); % 地球与另一焦点的距离
th=12.5*pi/180; % 卫星轨道与 x-y 平面的倾角
E=exp(-t/20); % 轨道收缩率
x=E.*(a*cos(t)-f);y=E.*(b*cos(th)*sin(t));z=E.*(b*sin(th)*sin(t));
plot3(x,y,z,'g') % 画全程轨线
[X,Y,Z]=sphere(30);X=R0*X;Y=R0*Y;Z=R0*Z; % 获得单位球坐标
grid on,hold on,surf(X,Y,Z),shading interp % 画地球
x1=-18*R0;x2=6*R0;y1=-12*R0;y2=12*R0;z1=-6*R0;z2=6*R0;
axis([x1 x2 y1 y2 z1 z2]) % 确定坐标范围
view([117 37]),comet3(x,y,z,0.02),hold off % 设视角、画运动轨线
%色彩变幻‘在 256 色情况下,才可被正确执行.图片刷新可能会卡,单独执行spinmap可查看到效果
figure;
peaks;
spinmap;
%% =======影片动画 =======
%三维图形的影片动画
figure;
shg,x=3*pi*(-1:0.05:1);y=x;[X,Y]=meshgrid(x,y);
R=sqrt(X.^2+Y.^2)+eps; Z=sin(R)./R;
h=surf(X,Y,Z);colormap(cool);axis off
n=12;mmm=moviein(n); %预设画面矩阵。新版完全可以取消此指令 。
for i=1:n
rotate(h,[0 0 1],25); %是图形绕 z 轴旋转 25 度 / 每次
mmm(:,i)=getframe; %捕获画面。新版改为 mmm(i)=getframe 。
end
movie(mmm,5,10) %以每秒10帧速度,重复播放5次
作者:JeromeWang
邮箱:yunfeiwang@hust.edu.cn
出处:http://www.cnblogs.com/jeromeblog/
(转载)MatLab绘图的更多相关文章
- Matlab绘图详解
Matlab绘图 强大的绘图功能是Matlab的特点之一,Matlab提供了一系列的绘图函数,用户不需要过多的考虑绘图的细节,只需要给出一些基本参数就能得到所需图形,这类函数称为高层绘图函数.此外,M ...
- 使用axes函数在matlab绘图中实现图中图的绘制
使用axes函数在matlab绘图中实现图中图的绘制 有时为了对细节进行详细说明,需要在一个较大坐标轴上绘制一个小图来对局部进行放大以阐述结果. 这可以通过调用axes函数实现. 下面通过绘制 y=1 ...
- matlab绘图--线性规划图解法示意
matlab绘图--线性规划图解法示意 图解法 matlab绘图 区域填充 线性规划问题: matlab绘图 L1=[4,0;4,4]; plot(L1(:,1),L1(:,2));hold on ...
- Matlab绘图(一二三维)
Matlab绘图 强大的绘图功能是Matlab的特点之一,Matlab提供了一系列的绘图函数,用户不需要过多的考虑绘图的细节,只需要给出一些基本参数就能得到所需图形,这类函数称为高层绘图函数.此外,M ...
- Matlab绘图高级部分
图形是呈现数据的一种直观方式,在用Matlab进行数据处理和计算后,我们一般都会以图形的形式将结果呈现出来.尤其在论文的撰写中,优雅的图形无疑会为文章加分.本篇文章非完全原创,我的工作就是把见到的Ma ...
- Matlab绘图系列之高级绘图
Matlab绘图系列之高级绘图 原帖地址: http://blog.163.com/enjoy_world/blog/static/115033832007865616218/ Matlab绘图 20 ...
- matlab绘图(详细)(全面)
Matlab绘图 强大的绘图功能是Matlab的特点之一,Matlab提供了一系列的绘图函数,用户不需要过多的考虑绘图的细节,只需要给出一些基本参数就能得到所需图形,这类函数称为高层绘图函数.此外,M ...
- Matlab 绘图完整入门
Matlab绘图 强大的绘图功能是Matlab的特点之一,Matlab提供了一系列的绘图函数,用户不需要过多的考虑绘图的细节,只需要给出一些基本参数就能得到所需图形,这类函数称为高层绘图函数.此外,M ...
- 详尽全面的matlab绘图教程
Matlab绘图 强大的绘图功能是Matlab的特点之一,Matlab提供了一系列的绘图函数,用户不需要过多的考虑绘图的细节,只需要给出一些基本参数就能得到所需图形,这类函数称为高层绘图函数.此外,M ...
随机推荐
- 在Windows上,如何卸载RabbitMQ服务
打开运行->CMD->sc delete RabbitMQ 如果报错..... 打开运行->regedit 找到RabbitMQ节点,删掉即可.(右侧看到的都是启动服务时,需要的配置 ...
- ES6学习小计
1.增加了for of语法,对应C#里的foreach,注意ES5中的 for in只会传递0,1,2.....序号,并且是字符for-of循环语句通过方法调用来遍历各种集合.数组.Maps对象.Se ...
- Storm ui 展示字段说明
1.Storm ui 首页 主要分为4块: Cluster Summary,Topology summary,Supervisor summary,Nimbus Configuration,如下图所示 ...
- thymeleaf中的th:each用法
一.th:eath迭代集合用法: <table> <thead> <tr> <th>序号</th> <th>用户名</th ...
- 159. Longest Substring with At Most Two Distinct Characters
最后更新 二刷 08-Jan-17 回头看了下一刷的,用的map,应该是int[256]的意思,后面没仔细看cuz whatever I was doing at that time.. wasnt ...
- kettle内存溢出
ETL工具kettle,在老版设计后,使用新版时,居然发生了内存溢出的错误: 出现: java heap 或者 OutOfMemory等字样 这是kettle分配的内存不足. 在kettle的运行路径 ...
- MFC实现数独(1)
雨天纷纷扰扰,数月里每日有雨,这个夏天不热,写这个数独的动机很简单:实践是最好的成长方式,想要获得自信,必有这么一遭,我躲不过.至于决定记录成博客,则是因为很久没有写文章,经常感觉脑海里很空白,屡次开 ...
- Oracle-11g-R2(11.2.0.3.x)RAC Oracle Grid & Database 零宕机方式升级 PSU(自动模式)
升级环境: 1.源库版本: Grid Infrastructure:11.2.0.3.13 Database:11.2.0.3.13 2.目标库版本: Grid Infrastructure:11.2 ...
- Bootstrap栅格系统(布局)
栅格系统(布局) Bootstrap内置了一套响应式.移动设备优先的流式栅格系统,随着屏幕设备或视口(viewport)尺寸的增加,系统会自动分为最多12列. 我在这里是把Bootstrap中的栅格系 ...
- Sysprep命令详解
本主题描述了 Windows(R) 8 版本的系统准备 (Sysprep) 工具的命令行语法. 如果你打算创建安装映像以部署到不同的计算机上,则必须运行带有 /generalize 选项的 Syspr ...