题目描述

HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。你会不会被他忽悠住?
 
 

Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence is defined to be { Ni, Ni+1, ..., Nj } where 1 <= i <= j <= K. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.

Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.

Input Specification:

Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer K (<= 10000). The second line contains K numbers, separated by a space.

Output Specification:

For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices i and j (as shown by the sample case). If all the K numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.

Sample Input:

10
-10 1 2 3 4 -5 -23 3 7 -21

Sample Output:

10 1 4
 #include<vector>
#include<stdio.h>
using namespace std;
int dp[],s[]={};
int main()
{
int n,tem;
scanf("%d",&n);
vector<int> vv;
bool is = ;
for(int i = ;i < n ;++i)
{
scanf("%d",&tem);
if(tem >= )
is = ;
vv.push_back(tem);
}
if(is)
{
printf("0 %d %d\n",vv[],vv[n-]);
return ;
}
dp[] = vv[];
for(int i = ;i < n ;++i)
{
if(dp[i-] > )
{
dp[i] = dp[i-] + vv[i];
s[i] = s[i-];
}
else
{
dp[i] = vv[i];
s[i] = i;
}
}
int MAX = -;
int end;
for(int i = ;i < n ;++i)
{
if(dp[i] > MAX)
{
MAX = dp[i];
end = i;
}
}
printf("%d %d %d\n",MAX,vv[s[end]],vv[end]);
return ;
}

连续子数组的最大和/1007. Maximum Subsequence Sum (25)的更多相关文章

  1. PAT 甲级 1007 Maximum Subsequence Sum (25)(25 分)(0不是负数,水题)

    1007 Maximum Subsequence Sum (25)(25 分) Given a sequence of K integers { N~1~, N~2~, ..., N~K~ }. A ...

  2. 1007 Maximum Subsequence Sum (25分) 求最大连续区间和

    1007 Maximum Subsequence Sum (25分)   Given a sequence of K integers { N​1​​, N​2​​, ..., N​K​​ }. A ...

  3. PAT甲 1007. Maximum Subsequence Sum (25) 2016-09-09 22:56 41人阅读 评论(0) 收藏

    1007. Maximum Subsequence Sum (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Y ...

  4. 1007 Maximum Subsequence Sum (25 分)

    1007 Maximum Subsequence Sum (25 分)   Given a sequence of K integers { N​1​​, N​2​​, ..., N​K​​ }. A ...

  5. PAT 1007 Maximum Subsequence Sum (25分)

    题目 Given a sequence of K integers { N​1​​ , N​2​​ , ..., N​K​​ }. A continuous subsequence is define ...

  6. PAT 解题报告 1007. Maximum Subsequence Sum (25)

    Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence is defined to be { Ni, ...

  7. PAT (Advanced Level) 1007. Maximum Subsequence Sum (25) 经典题

    Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence is defined to be { Ni, ...

  8. 1007. Maximum Subsequence Sum (25)

    Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence is defined to be { Ni, ...

  9. 1007 Maximum Subsequence Sum (25)(25 point(s))

    problem Given a sequence of K integers { N~1~, N~2~, ..., N~K~ }. A continuous subsequence is define ...

随机推荐

  1. Java基础--访问权限控制符

    今天我们来探讨一下访问权限控制符. 使用场景一:攻城狮A编写了ClassA,但是他不想所有的攻城狮都可以使用该类,应该怎么办? 使用场景二:攻城狮A编写了ClassA,里面有func1方法和func2 ...

  2. React Native开发环境搭建

    安装Xcode 安装Homebrew 安装Android SDK 安装flow和watchman 安装nodejs 安装react-native-cli 安装Genymotion 安装Webstorm ...

  3. hdu 3966 树链剖分

    思路:树链剖分入门题,我这门入得好苦啊,程序很快写出来了,可是在LCA过程中把update函数里的左右边界位置写反了,一直RE到死. #pragma comment(linker, "/ST ...

  4. IOS APP圆形图片的实现

    //设置圆形cornerRadius,是宽或高的一半 _imageView.layer.masksToBounds = YES; CGFloat w = _imageView.frame.size.w ...

  5. 4560 NOIP2015 D2T2 子串

    4560 NOIP2015 D2T2 子串  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 有两 ...

  6. C#程序开机运行

    #region 系统启动项 /// <summary> /// 获取启动项值 /// </summary> /// <param name="name" ...

  7. js实现遮罩以及弹出可移动登录窗口

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  8. 使用T4为数据库自动生成实体类

    T4 (Text Template Transformation Toolkit) 是一个基于模板的代码生成器.使用T4你可以通过写一些ASP.NET-like模板,来生成C#, T-SQL, XML ...

  9. 使用Bootstrap-Table 遇到的问题

    最近用bootstrap-Table插件,遇到的问题记录下: 1.如何按条件查询时,pageNumber重置为1? $('#btnSub').bind('click', function () { $ ...

  10. windows使用技巧

    使用命令行工具(cmd)并总是要切换到同一个文件夹   ◆通常的办法 打开命令行工具 切换到指定盘符 切换到目录 Microsoft Windows [Version 10.0.14393] (c) ...