下面说的这个问题可能大家都看到过,它是这么描述的:

  现在有n(n>=2)个球,n个球外观一模一样,但是重量有区别,其中有且仅有一个球的重量比其它n-1个球要重,现在有一个天平,天平是完好无损的,问最少需要称多少次才能确定哪个球的重量较重?

  初一看这个问题,感觉有点复杂,不知道从何入手。一般情况下,解决类似的问题需要简化问题,然后从中发现规律,从而解决整个问题。可以先假设有2个球,那么称一次就可以知道哪个球重;当有3个球时,也可以通过一次称量就可以确定哪个球重,因为假如放在天平上的球一样重,那么剩下的那个球必定是重球,否则天平重的那端就是重球;当有4个球时,一次称重时无法确定的。。即当球的个数大于3时,是无通过一次称重确定的。下面来分析大于3的情况:

  4个球时,可以称2次确定,分为2组(2,2),先取2个球,天平一端一个,重的那端为重球;若天平平衡,称剩下的一组即可;

  5个球时,也可以2次确定,分为2组(2,3),先取2个球,天平一端一个,重的那端为重球;若天平平衡,剩下的3个球一次称重就可以确定;

  6个球时,也可以两次确定,分为2组(3,3),天平每端放3个球,然后再对重的那端的3个球进行称重;

  7个球时,也可以两次确定,分为3组(2,2,3),先在天平每端放2个球,然后对重的那端再称重;若天平平衡,剩下的3个球一次称重;

  8个球时,也可以2次确定,分为(3,3,2),道理同上;

  9个球时,也可以2次确定,分为(3,3,3),道理同上;

  。。。。

  显然,当有27个球时,可以3次确定,分为(9,9,9),先确定重的那个球在哪9个球里,然后再确定重的那个球在哪3个球里,然后再需1次称量即可。

  从上面的分析可以,发现要想最少次数的称量,必须把球分组,并且组数不大于3,而且一次称重最多能从3个球中确定哪个球中,2次称重最多可以从9个球中确定哪个球重,3次称重最多可以从27个球中确定哪个球重。。m次称重最多可以从3^m个球中确定哪个球重。

  因此,当有n个球时,显然最少需要n^(1/3)次才能确定,这里需要特别说明一下,当n^(1/3)为整数时,最少需要n^(1/3)次;否则最少需要[n^(1/3)]+1次。

称球问题(zt)的更多相关文章

  1. Atitit 《控制论原理与概论attilax总结

    Atitit <控制论原理与概论attilax总结 <控制论> 奠基之作,出自创始人维纳.虽然内容权威,但我认为带有相当强烈的个人色彩,且门槛较高,不适合入门.深入研究控制论必看书籍 ...

  2. [转] ACM中国国家集训队论文集目录(1999-2009)

    国家集训队1999论文集 陈宏:<数据结构的选择与算法效率——从IOI98试题PICTURE谈起>来煜坤:<把握本质,灵活运用——动态规划的深入探讨>齐鑫:<搜索方法中的 ...

  3. 13 Balls Problem

    今天讨论的是称球问题. No.3 13 balls problem You are given 13 balls. The odd ball may be either heavier or ligh ...

  4. Atitit 三论”(系统论、控制论、信息论

    Atitit 三论"(系统论.控制论.信息论 1. 系统论的创始人是美籍奥地利生物学家贝塔朗菲1 2. 信息论是由美国数学家香农创立的,2 3. 什么是控制论? 2 1. 系统论的创始人是美 ...

  5. ACM/IOI 历年国家集训队论文集和论文算法分类整理

    国家集训队1999论文集 陈宏:<数据结构的选择与算法效率--从IOI98试题PICTURE谈起> 来煜坤:<把握本质,灵活运用--动态规划的深入探讨> 齐鑫:<搜索方法 ...

  6. PHP树生成迷宫及A*自己主动寻路算法

    PHP树生成迷宫及A*自己主动寻路算法 迷宫算法是採用树的深度遍历原理.这样生成的迷宫相当的细,并且死胡同数量相对较少! 随意两点之间都存在唯一的一条通路. 至于A*寻路算法是最大众化的一全自己主动寻 ...

  7. ACM/IOI 国家队集训队论文集锦

    转自:https://blog.csdn.net/txl199106/article/details/49227067 国家集训队1999论文集 陈宏:<数据结构的选择与算法效率——从IOI98 ...

  8. ZT 二分插入排序也称折半插入排序

    二分插入排序也称折半插入排序,基本思想是:设数列[0....n]分为两部分一部分是[0...i]为有序序列,另一部分是[i+1.....n]为无序序列,从无序序列中取一个数 x ,利用二分查找算法找到 ...

  9. [bzoj4874]筐子放球

    来自FallDream的博客,未经允许,请勿转载,谢谢. 小N最近在研究NP完全问题,小O看小N研究得热火朝天,便给他出了一道这样的题目: 有 n 个球,用整数 1 到 n 编号.还有 m 个筐子,用 ...

随机推荐

  1. 2.2……测试

    概述 黑盒测试: 是以用户的角度,从输入数据与输出数据的对应关系出发进行测试的.   白盒测试: 又称结构测试.透明盒测试.逻辑驱动测试或基于代码的测试.   单元测试: 又称模块测试,是开发者编写的 ...

  2. MYSQL里的索引类型介绍

    首先要明白索引(index)是在存储引擎(storage engine)层面实现的,而不是在server层面.不是所有的存储引擎支持有的索引类型. 1.B-TREE 最常见的索引类型,他的思想是所有的 ...

  3. WordPress的SEO技术

    原文:http://blog.wpjam.com/article/wordpress-seo/ 文章目录[隐藏] 内容为王 页面优化 标题 链接(URL) Meta 标签 语义化 H1 H2 H3 等 ...

  4. bzoj 3439 Kpm的MC密码(Trie+dfs序+主席树)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3439 [题意] 给定若干串,问一个串的作为其后缀的给定串集合中的第k小. [思路] 如 ...

  5. HDU5780 gcd 欧拉函数

    http://acm.hdu.edu.cn/showproblem.php?pid=5780 BC #85 1005 思路: 首先原式化简:x​^gcd(a,b)​​−1 也就是求n内,(公约数是i的 ...

  6. 在Ubuntu6.06 在搭建SVN服务器及在windows建立svn+ssh客户端

    部门现在使用的Linux系统是Ubuntu6.06,内核版本为2.6.15-57-386.由于系统比较老,所有用网上介绍的方法搭建SVN服务器经常出错,所以参考文章[1],将自己的搭建过程记录下. 1 ...

  7. html学习笔记之position

    今天主要一直看试验position的各种属性,现在记录下来以此备忘. position有四种常有属性,分别是static,fixed.absolute,relative fixed就是相对于窗口的位置 ...

  8. jQuery基础学习6——基本选择器

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  9. AVCaptureDevice的几个属性

    AVCaptureDevice.h,主要用来获取iphone一些关于相机设备的属性. AVCaptureDevice.h,必须要引入AVFoundation.framework包. 1. 前置和后置摄 ...

  10. 从Jetty、Tomcat和Mina中提炼NIO构架网络服务器的经典模式(二)

    本文转载自 http://blog.csdn.net/cutesource/article/details/6192145 下面再来看看Tomcat是如何使用NIO来构架Connector这块的. 先 ...