一、NumPy 是什么

NumPy 是 Python 科学计算的基础包,它专为进行严格的数字处理而产生。在之前的随笔里已有更加详细的介绍,这里不再赘述。
利用 Python 进行数据分析(一)简单介绍

二、ndarray 是什么

ndarray 是一个多维的数组对象,具有矢量算术运算能力和复杂的广播能力,并具有执行速度快和节省空间的特点。
ndarray 的一个特点是同构:即其中所有元素的类型必须相同。

三、ndarray 的创建




array() 函数
最简单的方法, 使用 NumPy 提供的 array() 函数直接将 Python 数组转换为 ndarray 数组,array() 接受一切序列类型的对象,例如将一个列表转换成 ndarray 数组:



zeros() 函数和 ones() 函数
这两个函数分别可以创建指定长度或形状的全0或全1的 ndarray 数组,比如:



empty() 函数
这个函数可以创建一个没有任何具体值的 ndarray 数组,例如:

需要注意一点的是,这个函数返回的值不一定是 0,可能是其他未初始化的垃圾值。




arange() 函数
这个函数是 Python 内置函数 range 的数组版,使用方法:

四、ndarray 的数据类型

在创建 ndarray 数组的时候可以指定元素的数据类型,例如:

所支持的数据类型包括整数、浮点数、复数、布尔值、字符串或是普通的 Python 对象(object)。

在创建 ndarray 数组的时候,如未显示指定类型,它会尝试推断出一个合适的数据类型。


类型转换


通过 ndarray 的 astype() 方法进行强制类型转换,浮点数转换为整数时小数部分会被舍弃:
如果某字符串类型的数组里的元素全是数字,也可以通过此方法直接转换成数值类型:

astype 会创建一份新的数组,即便是指定为同类型也依然如此。

五、ndarray 的简单使用

使用 ndarray 数组可以让我们不需要使用循环就可以对列表里的元素执行操作,语法和对标量元素的操作一样,例如:
 
 

利用Python进行数据分析(4) NumPy基础: ndarray简单介绍的更多相关文章

  1. 利用Python进行数据分析(5) NumPy基础: ndarray索引和切片

    概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为a ...

  2. 《利用python进行数据分析》NumPy基础:数组和矢量计算 学习笔记

    一.有关NumPy (一)官方解释 NumPy is the fundamental package for scientific computing with Python. It contains ...

  3. 《利用python进行数据分析》——Numpy基础

    一.创建数组 1.创建数组的函数 array:将输入数据(列表.元组.数组或其他序列类型)转换为ndarray,可用dtype指定数据类型. >>> import numpy as ...

  4. 利用Python进行数据分析(6) NumPy基础: 矢量计算

    矢量化指的是用数组表达式代替循环来操作数组里的每个元素. NumPy提供的通用函数(既ufunc函数)是一种对ndarray中的数据进行元素级别运算的函数. 例如,square函数计算各元素的平方,r ...

  5. 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍

    一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...

  6. 利用Python进行数据分析(12) pandas基础: 数据合并

    pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...

  7. 利用Python进行数据分析(9) pandas基础: 汇总统计和计算

    pandas 对象拥有一些常用的数学和统计方法.   例如,sum() 方法,进行列小计:   sum() 方法传入 axis=1 指定为横向汇总,即行小计:   idxmax() 获取最大值对应的索 ...

  8. 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作

    一.reindex() 方法:重新索引 针对 Series   重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...

  9. 利用Python进行数据分析(14) pandas基础: 数据转换

    数据转换指的是对数据的过滤.清理以及其他的转换操作. 移除重复数据 DataFrame里经常会出现重复行,DataFrame提供一个duplicated()方法检测各行是否重复,另一个drop_dup ...

随机推荐

  1. KMP算法求解

    // KMP.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include<iostream> using namespac ...

  2. Java多线程基础——对象及变量并发访问

    在开发多线程程序时,如果每个多线程处理的事情都不一样,每个线程都互不相关,这样开发的过程就非常轻松.但是很多时候,多线程程序是需要同时访问同一个对象,或者变量的.这样,一个对象同时被多个线程访问,会出 ...

  3. 8.仿阿里云虚拟云服务器的FTP(包括FTP文件夹大小限制)

    平台之大势何人能挡? 带着你的Net飞奔吧!:http://www.cnblogs.com/dunitian/p/4822808.html#iis 原文:http://dnt.dkill.net/Ar ...

  4. scp报错 -bash: scp: command not found

    环境:RHEL6.5 使用scp命令报错: [root@oradb23 media]# scp /etc/hosts oradb24:/etc/ -bash: scp: command not fou ...

  5. js面向对象学习 - 对象概念及创建对象

    原文地址:js面向对象学习笔记 一.对象概念 对象是什么?对象是“无序属性的集合,其属性可以包括基本值,对象或者函数”.也就是一组名值对的无序集合. 对象的特性(不可直接访问),也就是属性包含两种,数 ...

  6. Python学习

    Python基础教程        网易云课堂-零基础入门学习Python

  7. python中IndentationError: expected an indented block错误的解决方法

    IndentationError: expected an indented block 翻译为IndentationError:预期的缩进块 解决方法:有冒号的下一行要缩进,该缩进就缩进

  8. Maven多模块,Dubbo分布式服务框架,SpringMVC,前后端分离项目,基础搭建,搭建过程出现的问题

    现互联网公司后端架构常用到Spring+SpringMVC+MyBatis,通过Maven来构建.通过学习,我已经掌握了基本的搭建过程,写下基础文章为而后的深入学习奠定基础. 首先说一下这篇文章的主要 ...

  9. 在配有英特尔® Iris™ 显卡的系统上通过优化对 Just Cause 3 进行增强

    高端 PC 继续通过高性能显卡驱动桌面游戏. 一流的"梦想机器"基于第六代智能 英特尔® 酷睿™ 处理器i7-6700K等 CPU,通常与高端独立显卡配合使用以运行要求最严苛的游戏 ...

  10. 在.NET Core控制台程序中使用依赖注入

    之前都是在ASP.NET Core中使用依赖注入(Dependency Injection),昨天遇到一个场景需要在.NET Core控制台程序中使用依赖注入,由于对.NET Core中的依赖注入机制 ...