http://acm.hdu.edu.cn/showproblem.php?pid=5723

Abandoned country

Problem Description
 
An abandoned country has n(n≤100000) villages which are numbered from 1 to n. Since abandoned for a long time, the roads need to be re-built. There are m(m≤1000000) roads to be re-built, the length of each road is wi(wi≤1000000). Guaranteed that any two wi are different. The roads made all the villages connected directly or indirectly before destroyed. Every road will cost the same value of its length to rebuild. The king wants to use the minimum cost to make all the villages connected with each other directly or indirectly. After the roads are re-built, the king asks a men as messenger. The king will select any two different points as starting point or the destination with the same probability. Now the king asks you to tell him the minimum cost and the minimum expectations length the messenger will walk.
 
Input
 
The first line contains an integer T(T≤10) which indicates the number of test cases. 
For each test case, the first line contains two integers n,m indicate the number of villages and the number of roads to be re-built. Next m lines, each line have three number i,j,wi, the length of a road connecting the village i and the village j is wi.
 
Output
 
output the minimum cost and minimum Expectations with two decimal places. They separated by a space.
 
Sample Input
 
1
4 6
1 2 1
2 3 2
3 4 3
4 1 4
1 3 5
2 4 6
 
Sample Output
 
6 3.33
 
题意:国家有M条废弃的路和N个点,现在要重新修,第一个问题是求出连通每一个点需要的最短路径是多少,第二个问题是求在连通的路任意选两个点走,它的最小期望是多少。
思路:第一个问题很简单,就是单纯的最小生成树,但是第二个问题一开始让我和队友感到很迷茫。英文题面,真是比较难懂意思。最小期望??什么鬼。。后来仔细想了好久,建立起了最小生成树的图了。。最终还是不会做,不知道DFS怎么跑来算期望。。听了别人的讲解才知道  一棵树上,设某一段路在用DFS遍历路径过程中在该条路径遍历过的次数为 cnt,例如有这样一条路径:1 -> 3 -> 5 -> 2 ,那么 路 1 -> 3 的cnt为3,路 3 -> 5 的cnt为2,路 5 -> 2 的cnt为1,这样。我们要算 路 1 -> 3 对答案的贡献,那么设 路 1 -> 3的权值为 w, 它的贡献就是 cnt * ( n - cnt ) * w , 然后期望就是 所有的路的贡献加起来 * 2 / ( n * ( n - 1 ) ) 。
这里用 Kruskal 算法比较好,复杂度低,也利于建最小生成树的图。
 
 #include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <cmath>
#include <vector>
using namespace std;
#define N 100005
#define M 1000005
typedef pair <int, int> P;
struct node
{
int u, v, w;
}e[M*];
vector <P> edge[N]; int n, m;
double ans2;
int fa[N]; bool cmp(const node& e1, const node& e2)
{
return e1.w < e2.w;
} int Find(int x)
{
if(fa[x] == x) return x;
return fa[x] = Find(fa[x]);
} void Union(int x, int y)
{
int fx = Find(x), fy = Find(y);
if(fx != fy) fa[fx] = fy;
} long long Kruskal()
{
for(int i = ; i <= n; i++)
fa[i] = i;
for(int i = ; i <= n; i++)
edge[i].clear(); sort(e, e + m*, cmp);
long long res = ;
for(int i = ; i < m*; i++) {
int u = e[i].u, v = e[i].v, w = e[i].w;
int fu = Find( u ), fv = Find( v );
if(fu != fv) {
Union( u, v );
res += e[i].w;
edge[u].push_back(P(v, w));
edge[v].push_back(P(u, w));
//建最小生成树的图
}
}
return res;
} int dfs(int u, int fa)
{
int cnt = ;
for(int i = ; i < edge[u].size(); i++) {
int v = edge[u][i].first , w = edge[u][i].second;
if( fa != v ) {
int now = dfs(v, u);
cnt += now;
ans2 = ans2 + 1.0 * now * (n - now) * w;
//算每段路的贡献
}
}
return cnt + ;
} int main()
{
int t;
scanf("%d", &t);
while(t--) {
scanf("%d%d", &n, &m);
for(int i = ; i < m; i++) {
scanf("%d%d%d", &e[i].u, &e[i].v, &e[i].w);
e[m+i].v = e[i].u;
e[m+i].u = e[i].v;
e[m+i].w = e[i].w;
} long long ans1 = Kruskal();
ans2 = ;
dfs(, -);
ans2 = ans2 * 2.0 / (1.0 * n) / (n - 1.0); printf("%I64d %.2f\n", ans1, ans2);
}
return ;
}

HDU 5723:Abandoned country(最小生成树+算期望)的更多相关文章

  1. HDU 5723 Abandoned country 最小生成树+搜索

    Abandoned country Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  2. hdu 5723 Abandoned country 最小生成树 期望

    Abandoned country 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5723 Description An abandoned coun ...

  3. hdu 5723 Abandoned country 最小生成树+子节点统计

    Abandoned country Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  4. HDU 5723 Abandoned country (最小生成树+dfs)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5723 n个村庄m条双向路,从中要选一些路重建使得村庄直接或间接相连且花费最少,这个问题就是很明显的求最 ...

  5. 最小生成树 kruskal hdu 5723 Abandoned country

    题目链接:hdu 5723 Abandoned country 题目大意:N个点,M条边:先构成一棵最小生成树,然后这个最小生成树上求任意两点之间的路径长度和,并求期望 /************** ...

  6. HDU 5723 Abandoned country(落后渣国)

    HDU 5723 Abandoned country(落后渣国) Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 65536/65536 ...

  7. HDU 5723 Abandoned country 【最小生成树&&树上两点期望】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=5723 Abandoned country Time Limit: 8000/4000 MS (Java/ ...

  8. hdu 5723 Abandoned country(2016多校第一场) (最小生成树+期望)

    Abandoned country Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  9. HDU 5723 Abandoned country (最小生成树 + dfs)

    Abandoned country 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5723 Description An abandoned coun ...

  10. HDU 5723 Abandoned country(kruskal+dp树上任意两点距离和)

    Problem DescriptionAn abandoned country has n(n≤100000) villages which are numbered from 1 to n. Sin ...

随机推荐

  1. Entity framework 更改模型,新增表

    在Package Manager Console 中运行命令Enable-Migrations 再次运行可以更新 抄袭 在实体类中增加一个属性以后,执行 Update-Database 命令 ,可以更 ...

  2. 潜移默化学会WPF--值转换器

    原文:潜移默化学会WPF--值转换器 1. binding 后面的stringFormat的写法----连接字符串 <TextBlock Text="{Binding Path=Qty ...

  3. linux没有 conio.h解决的方式

    conio.h不是C标准库中的头文件,在ISO和POSIX标准中均未定义. conio是Console Input/Output(控制台输入输出)的简写,当中定义了通过控制台进行数据输入和数据输出的函 ...

  4. WPF 4 TextBox 笔刷特效

    原文:WPF 4 TextBox 笔刷特效      TextBox 控件是我们开发过程中必不可少的组件,它可以使应用程序方便的与用户进行文字交互.在新WPF 4 中又为TextBox 添加了两种新笔 ...

  5. 动态lambda 构建

    var param = Expression.Parameter(typeof(T)); var datetime1 = Expression.Constant(dt1); var datetime2 ...

  6. excel操作for(lutai)

    条件统计某个区域的值 第一种方法: =SUMIFS(P2:P5,L2:L5,A2) 第一个参数:被求和的单元格范围 第二个参数:明细表条件值单元格范围 第三个参数:主表条件单元格(可以是范围) 公式的 ...

  7. 深度网络中的Tricks

    数据增强(Data augmentation) 预处理(Pre-processing) 初始化(Initializations) 训练中的Tricks 激活函数(Activation function ...

  8. Oracle emca on linux

    http://blog.csdn.net/haibusuanyun/article/details/16338591 bash-3.2$  lsnrctl status LSNRCTL for Lin ...

  9. 深入解析Windows窗口创建和消息分发(三个核心问题:怎么将不同的窗口过程勾到一起,将不同的hwnd消息分发给对应的CWnd类去处理,CWnd如何简单有效的去处理消息,由浅入深,非常清楚) good

    笔记:争取不用看下面的内容,只看自己的笔记,就能记住这个流程,就算明白了: _tWinMain-->AfxWinMain,它调用四个函数: -->AfxWinInit用于做一些框架的初始化 ...

  10. Linux升级OpenSSL版本

    安装nginx的时候,出现了这样的问题: nginx : Depends: libssl1.0.0 (>= 1.0.2~beta3) but 1.0.1f-1ubuntu2.11 is to b ...