一.什么是计算机科学?

  首先明确的一点就是计算机科学不仅仅是对计算机的研究,虽然计算机在科学发展的过程中发挥了重大的作用,但是它只是一个工具,一个没有灵魂的工具而已。所谓的计算机科学实际上是对问题、解决问题以及解决问题的过程中产生产生的解决方案的研究。例如给定一个问题,计算机科学家的目标是开发一个算法来处理该问题,最终的该问题的解、或者最优解。所以说计算机科学也可以被认为是对算法的研究。因此我们也可以感受到,所谓的算法就是对问题进行处理且求解的一种实现思路或者思想。

二.如何形象化的理解算法和数据结构?

  -  案例引导:

    一个常胜将军在作战之前都会进行战略的指定,目的是为了能够在最短的时间切成本消耗最低的情况下获取最终的胜利。如果将编码作为战场,则程序员就是这场战役的指挥官,你如何可以将你的程序可以在最短且消耗资源最小的情况下获取最终的执行结果呢?数据结构和算法就是我们的策略!

  -  意义所在:

    -  数据结构和算法思想的通用性异常的强大,在任何语言中都被使用,它们将会是我们编码生涯中伴随我们最长久利器(左膀右臂)。有一定经验的程序员最终拼的就是算法和数据结构。

    -  数据结构和算法思想也可以帮助我们拓展和历练编码的思维,可以让我们更好的融入到编程世界的角角落落。

三.什么是算法分析?

  - 案例引入:刚接触编程的学生经常会将自己编写的程序和别人的程序做比对,获取在比对的过程中会发现双方编写的程序很相似但又各不相同。那么就会出现一个有趣的现象:两组程序都是用来解决同一个问题的,但是两组程序看起来又各不相同,那么哪一组程序更好呢?例如下述代码:

def sumOfN(n):
theSum = 0
for i in range(1,n+1):
theSum = theSum + i return theSum print(sumOfN(10))
def foo(tom):
fred = 0
for bill in range(1,tom+1):
barney = bill
fred = fred + barney return fred print(foo(10))

  分析:

    - 哪个函数更好,答案取决于你的标准。如果你关注可读性,函数 sumOfN 肯定比 foo 好。事实上,你可能已经在介绍编程的课程中看到过很多例子,他们的目标之一就是帮助你编写易于阅读和理解的程序。然而,在本课程中,我们对算法本身的表示更感兴趣(当然我们希望你继续努力编写可读的,易于理解的代码)。

    - 算法分析是基于每种算法使用的计算资源量来比较算法。我们比较两个算法,说一个比另一个算法好的原因在于它在使用资源方面更有效率,或者仅仅使用的资源更少。从这个角度来看,上面两个函数看起来很相似。它们都使用基本相同的算法来解决求和问题。

  - 问题:a+b+c = 1000  a**2 + b**2 = c**2 (a,b,c均为自然数),求出a,b,c可能的组合?

for a in range(0,1001):
for b in range(0,1001):
for c in range(0,1001):
if a**2+b**2 == c**2 and a+b+c==1000:
print(a,b,c)
for a in range(0,1001):
for b in range(0,1001):
c = 1000 - a - b
if a**2+b**2 == c**2 and a+b+c==1000:
print(a,b,c)

  分析:很明显上述两中问题的解决方案是不同的。那如何判定上述两种解决方案(算法)的优劣呢?有同学会说,观察计算两种算法使用耗费计算机资源的大小和它们的执行效率呀!但是我想说的是,一些较为复杂的算法,它耗费计算机资源的大小和执行效率我们很难能够直观的从算法的编码上分析出来。所以我们必须采用某种量化的方式求出不同算法的资源耗费和执行效率的具体值来判定算法之间的优劣。问题来了,如何进行量化计算呢?方法有两种:

  - 方法1:计算算法执行的耗时(不推荐)。

import time
start_time = time.time()
for a in range(0,1001):
for b in range(0,1001):
for c in range(0,1001):
if a**2+b**2 == c**2 and a+b+c==1000:
print(a,b,c)
end_time = time.time()
print(end_time-start_time) #执行结果为:
0 500 500
200 375 425
375 200 425
500 0 500
1221.7778379917145
import time
start_time = time.time()
for a in range(0,1001):
for b in range(0,1001):
c = 1000 - a - b
if a**2+b**2 == c**2 and a+b+c==1000:
print(a,b,c)
end_time = time.time()
print(end_time-start_time) #执行结果为:
0 500 500
200 375 425
375 200 425
500 0 500
1.410386085510254

  注意:单靠执行时间可以反应算法的效率吗?不能。跟机器(执行环境)存在很大关系。

  方法2:计算算法的时间复杂度(推荐)

    - 时间复杂度:量化算法需要的操作或者执行步骤的数量。

四.时间复杂度

  - 我们试图通过算法的执行时间来判定算法的优劣。但是仅仅根据执行时间判定算法优劣有些片面,因为算法是独立于计算机的。重要的是量化算法需要的操作或者步骤的数量。选择适当的基本计算单位是个复杂的问题,并且将取决于如何实现算法。对于先前的求和算法,一个比较好的基本计算单位是对执行语句进行计数。

  - 在 sumOfN 中,赋值语句的计数为 1(theSum = 0theSum=0) 加上 n 的值(我们执行 theSum=theSum+itheSum=theSum+i 的次数)。我们通过函数 T 表示 T(n)=1+n。参数 n 通常称为“问题的规模”,我们称作 “T(n) 是解决问题大小为 n 所花费的时间,即 1+n 步长”。在上面的求和函数中,使用 n 来表示问题大小是有意义的。我们可以说,100,000 个整数和比 1000 个问题规模大。因此,所需时间也更长。我们的目标是表示出算法的执行时间是如何相对问题规模大小而改变的。

   - 计算机科学家更喜欢将这种分析技术进一步扩展。事实证明,操作步骤数量不如确定 T(n) 最主要的部分来的重要。换句话说,当问题规模变大时,T(n) 函数某些部分的分量会超过其他部分。函数的数量级表示了随着 n 的值增加而增加最快的那些部分。

    - 数量级通常称为大O符号,写为 O(f(n))。它表示对计算中的实际步数的近似。函数 f(n) 提供了 T(n) 最主要部分的表示方法。T(n)的最主要部分是:在上述示例中,T(n)=1+n。当 n 变大时,常数 1 对于最终结果变得越来越不重要。如果我们找的是 T(n) 的近似值,我们可以删除 1。因此T(n)中最主要的部分为n,因此f(n)=n。因此在sumOfN函数对应的算法的时间复杂度可即为O(f(n)),即为O(n)。

- 另外一个示例,假设对于一些算法,确定的步数是 T(n)=5n^2+27n+1005。当 n 很小时, 例如 1 或 2 ,常数 1005 似乎是函数的主要部分。然而,随着 n 变大,n^2 这项变得越来越重要。事实上,当 n 真的很大时,其他两项在它们确定最终结果中所起的作用变得不重要。当 n 变大时,为了近似 T(n),我们可以忽略其他项,只关注 5n^2 。系数 5 也变得不重要。我们说,T(n) 具有的数量级为 f(n)=n^2,或者 O( n^2 )。

  - 常见的时间复杂度:O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) < O(2^n)  < O(n!) < O(n^n)
  - 案例分析:计算下列算法的时间复杂度

 a=5
b=6
c=10
for i in range(n):
for j in range(n):
x = i * i
y = j * j
z = i * j
for k in range(n):
w = a*k + 45
v = b*b
d = 33

  分析:前三行赋值语句执行操作步骤为3,5-8行的执行操作步骤为3n,结合第四行的外部循环,整个内外循环的执行步骤为3n^2。9-11行为2n,12行为1。最终得出T(n)=3+3n^2+2n+1,简化操作后T(n)=3n^2+2n+4。通过查看指数,我们可以看到 n^2 项是最重要的,因此这个代码段是 O(n^ 2)。当 n 增大时,所有其他项以及主项上的系数都可以忽略。

四.数据结构:

  - 对于数据(基本类型的数据(int,float,char))的组织方式就被称作为数据结构。数据结构解决的就是一组数据如何进行保存,保存形式是怎样的。

  - 案例:需要存储一些学生的学生信息(name,score),那么这些数据应该如何组织呢?查询某一个具体学生的时间复杂度是什么呢?

    - 组织形式1:  

[{'name':'zhangsan','score':100},
{'name':'lisi','score':99}
]

    - 组织形式2:

[('zhangsan',100),
('lisi',99)
]

    - 组织形式3:

{'zhangsan':{'score':100},
'lisi':{'score':99}
}

  - 三种组织形式基于查询的时间复杂度分别为:O(n),O(n),O(1)

  - 发现:python中的字典,列表,元组本身就是已经被封装好的一种数据结构啦。使用不同的数据结构进行数据的存储,所导致的时间复杂度是不一样。因此认为算法是为了解决实际问题而设计的,数据结构是算法需要处理问题的载体。

  










数据结构&算法的引言+时间复杂度的更多相关文章

  1. 1.数据结构&算法的引言+时间复杂度

    一.什么是计算机科学? 首先明确的一点就是计算机科学不仅仅是对计算机的研究,虽然计算机在科学发展的过程中发挥了重大的作用,但是它只是一个工具,一个没有灵魂的工具而已.所谓的计算机科学实际上是对问题.解 ...

  2. 一.数据结构&算法的引言+时间复杂度

    目录(contents): 1.什么是计算机科学?什么是算法? 2.如何形象化的理解算法? 3.什么是算法分析? 4.时间复杂度 5.数据结构 6.总结算法和数据结构之间的关联 一.什么是计算机科学? ...

  3. 数据结构&算法的引言&时间复杂度

    什么是计算机科学? 首先明确的一点就是计算机科学不仅仅是对计算机的研究,虽然计算机在科学发展的过程中发挥了重大的作用,但是它只是一个工具,一个没有灵魂的工具而已.所谓的计算机科学实际上是对问题.解决问 ...

  4. python 下的数据结构与算法---3:python内建数据结构的方法及其时间复杂度

    目录 一:python内部数据类型分类 二:各数据结构 一:python内部数据类型分类 这里有个很重要的东西要先提醒注意一下:原子性数据类型和非原子性数据类型的区别 Python内部数据从某种形式上 ...

  5. 数据结构+算法面试100题~~~摘自CSDN

    数据结构+算法面试100题~~~摘自CSDN,作者July 1.把二元查找树转变成排序的双向链表(树) 题目:输入一棵二元查找树,将该二元查找树转换成一个排序的双向链表.要求不能创建任何新的结点,只调 ...

  6. day40 数据结构-算法(二)

    什么是数据结构? 简单来说,数据结构就是设计数据以何种方式组织并存储在计算机中. 比如:列表.集合与字典等都是一种数据结构. N.Wirth: “程序=数据结构+算法” 列表 列表:在其他编程语言中称 ...

  7. 初转java随感(一)程序=数据结构+算法

    大学刚学编程的时候,有一句很经典的话程序=数据结构+算法 今天有了进一步认识. 场景: 1.当前局面 (1)有现成的封装好的分页组件 返回结果是page.类型为:Page.包括 page 分页信息,d ...

  8. 数据结构算法集---C++语言实现

    //数据结构算法集---C++语言实现 //各种类都使用模版设计,可以对各种数据类型操作(整形,字符,浮点) /////////////////////////// // // // 堆栈数据结构 s ...

  9. 【每天一道算法题】时间复杂度为O(n)的排序

    有1,2,……一直到n的无序数组,求排序算法,并且要求时间复杂度为O(n),空间复杂度为O(1),使用交换,而且一次只能交换两个数. 这个是以前看到的算法题,题目不难.但是要求比较多,排序算法中,时间 ...

随机推荐

  1. 使用MultiByteToWideChar转换UTF8为GBK(UTF8在Windows的代码页是CP_UTF8)

    两个使用的函数: 1,UTF8转化为Unicode,inline为了编译后更快运行,老用到了,返回字符串为了使用链式表达式 inline WCHAR  *UTF8ToUnicode(const cha ...

  2. SqlServer删除复制监视器中无效的发布名称

    原文:SqlServer删除复制监视器中无效的发布名称 在服务器复制监视器中有一个发布名称,因为该发布订阅已经删除. ReportServerTempDB只有一个发布,已无效,打算删除. --直接删除 ...

  3. HTTP 错误 403.14 - Forbidden Web 服务器被配置为不列出此目录的内容。

    解决方法: 找到目录浏览,打开,点击右边的启用就OK了.

  4. 数据库连接池之_c3p0

    C3p0 1,手动设置参数 @Test public void demo1(){ Connection connection =null; PreparedStatement preparedStat ...

  5. nyoj7——街区最短问题

    描述 一个街区有很多住户,街区的街道只能为东西.南北两种方向. 住户只可以沿着街道行走. 各个街道之间的间隔相等. 用(x,y)来表示住户坐在的街区. 例如(4,20),表示用户在东西方向第4个街道, ...

  6. Elevate Web Builder for Web Developers(类似于unigui的东西)

    推荐一款pascal 语言的web 开发工具 这几天仔细研究了一款使用Pascal 语言开发web 的工具 具体介绍可以参照这里. 先上几张他开发的页面照.

  7. qt5.6 webengine兼容xp的编译方法

    http://www.qtcn.org/bbs/read-htm-tid-62470.html http://stackoverflow.com/questions/31678657/qtwebeng ...

  8. “真正的工作不是说的天花乱坠”,Torvalds 说, “而是在于细节”(Torvalds 认为成功的项目都是99%的汗水和1%的创新)

    在刚刚结束的加利福尼亚州的开源领袖峰会(2月14日-16日)上,Linus Torvalds 接受了外媒的采访,分享了他如何管理 Linux kernel 的开发以及他对工作的态度. “真正的工作不是 ...

  9. 发布Qt Widgets桌面应用程序的方法(自定义进程步骤,用QT Creator直接生成)

    发布Qt Widgets桌面应用程序的方法 Qt是一款优秀的跨平台开发框架,它可以在桌面.移动平台以及嵌入式平台上运行.目前Qt 5介绍程序发布的文章帖子比较少.大家又非常想要知道如何发布Qt应用程序 ...

  10. idea 导入maven项目

    1.import project 2.选择maven项目 3.选择第二个external moudle,选择maven, 4.点击next,一次点击1,2,3,4 5.设置maven环境 6.点击ok ...