3126: [Usaco2013 Open]Photo

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 335  Solved: 169
[Submit][Status][Discuss]

Description

Farmer John has decided to assemble a panoramic photo of a lineup of his N cows (1 <= N <= 200,000), which, as always, are conveniently numbered from 1..N. Accordingly, he snapped M (1 <= M <= 100,000) photos, each covering a contiguous range of cows: photo i contains cows a_i through b_i inclusive. The photos collectively may not necessarily cover every single cow. After taking his photos, FJ notices a very interesting phenomenon: each photo he took contains exactly one cow with spots! FJ was aware that he had some number of spotted cows in his herd, but he had never actually counted them. Based on his photos, please determine the maximum possible number of spotted cows that could exist in his herd. Output -1 if there is no possible assignment of spots to cows consistent with FJ's photographic results.

给你一个n长度的数轴和m个区间,每个区间里有且仅有一个点,问能有多少个点

Input

* Line 1: Two integers N and M.

* Lines 2..M+1: Line i+1 contains a_i and b_i.

Output

* Line 1: The maximum possible number of spotted cows on FJ's farm, or -1 if there is no possible solution.

Sample Input

5 3
1 4
2 5
3 4

INPUT DETAILS: There are 5 cows and 3 photos. The first photo contains cows 1 through 4, etc.

Sample Output

1
OUTPUT DETAILS: From the last photo, we know that either cow 3 or cow 4 must be spotted. By choosing either of these, we satisfy the first two photos as well
 
  不知道对于这道题有没有人和我一样,想到了 [Apio2012]Guard 这道题,题目设置还是挺类似的,然而正解之间貌似毫不相关。
  这道题更多的是偏向于动归题,如果知道是动归的话那么转移方程一般也就写的出来了:
    f[i]=MAX(f[j])+1
  看着挺简单的,但是j的取值范围的确定是这道题的关键,为此我们可以在纸上自己模拟一些情况,然后我们可以注意到,能够更新这个点且合法的点一定在离当前点最近的完整区间的左端点及其之后,且一定在离当前点最近的右端点之前。而我们又发现这个区间对于每个点都是单调的,所以我们可以打出来单调队列来进行优化。因此这道题就差不多搞完了。
  最后一点,不合法的情况的判断。如果说当前点的可选取的左边界大于右边界,那么,这个点我们是不能去放置的,我们应把它赋为极小值,注意,此时只是在这个点放置不合法,不代表整个题都不合法。而如果出现了对于整个题目设置都不合法的情况他后面的区间都会受他影响而变为负值。这一点语言不好表述,请读者自行手推。
 #pragma GCC optimze("O3")
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#include<cmath>
#include<map>
#include<vector>
#define N 200005
using namespace std;
int n,m,r[N],l[N],q[N*],en,hea=,f[N];
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n+;i++)
r[i]=i-;
for(int i=;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
l[y+]=max(l[y+],x);
r[y]=min(r[y],x-);
}
for(int i=;i<=n+;i++)
l[i]=max(l[i],l[i-]);
for(int i=n;i>;i--)
r[i]=min(r[i],r[i+]);
en++;
q[en]=;
for(int i=;i<=n+;i++)
{
for(int j=r[i-]+;j<=r[i];j++)
{
while(hea<=en&&f[q[en]]<f[j])en--;
en++;
q[en]=j;
}
while(hea<=en&&q[hea]<l[i])hea++;
if(hea>en)
f[i]=-0x7ffffff;
else
f[i]=f[q[hea]]+;
}
if(f[n+]>=)printf("%d\n",f[n+]-);
else
printf("-1\n");
return ;
}

Bzoj 3126[Usaco2013 Open]Photo 题解的更多相关文章

  1. 数据结构(线段树):BZOJ 3126: [Usaco2013 Open]Photo

    3126: [Usaco2013 Open]Photo Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 222  Solved: 116 Descrip ...

  2. ●BZOJ 3126 [Usaco2013 Open]Photo

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3126 题解: 单调队列优化DP,神奇.. (好像某次考试考过,当时我用了差分约束+SPFA优 ...

  3. bzoj 3126: [Usaco2013 Open]Photo——单调队列优化dp

    Description 给你一个n长度的数轴和m个区间,每个区间里有且仅有一个点,问能有多少个点 Input * Line 1: Two integers N and M. * Lines 2..M+ ...

  4. BZOJ 3126 [USACO2013 Open]Photo (单调队列优化DP)

    洛谷传送门 题目大意:给你一个长度为$n$的序列和$m$个区间,每个区间内有且仅有一个1,其它数必须是0,求整个序列中数字1最多的数量 神题,竟然是$DP$ 定义$f_{i}$表示第i位放一个1时,最 ...

  5. bzoj3126[Usaco2013 Open]Photo 单调队列优化dp

    3126: [Usaco2013 Open]Photo Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 374  Solved: 188[Submit] ...

  6. [bzoj 3048] [Usaco2013 Jan]Cow Lineup

    [bzoj 3048] [Usaco2013 Jan]Cow Lineup Description 给你一个长度为n(1<=n<=100,000)的自然数数列,其中每一个数都小于等于10亿 ...

  7. BZOJ 4033: [HAOI2015]树上染色题解

    BZOJ 4033: [HAOI2015]树上染色题解(树形dp) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1327400 原题地址: BZOJ 403 ...

  8. [BZOJ 3126] Photo

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=3126 [算法] 差分约束系统 注意SPFA判负环的条件应为 : 若所有点入队次数之和 ...

  9. bzoj 4094: [Usaco2013 Dec]Optimal Milking

    4094: [Usaco2013 Dec]Optimal Milking Description Farmer John最近购买了N(1 <= N <= 40000)台挤奶机,编号为1 . ...

随机推荐

  1. 在云中生成和模拟 iOS

    原文:在云中生成和模拟 iOS 1.原文地址 https://msdn.microsoft.com/zh-cn/library/vs/alm/dn858446.aspx

  2. SQL 修改主键约束

    原文:SQL 修改主键约束 今天在学习数据库的时候遇到一个关于如何修改主键约束的问题,抄录下来以供备用. --修改主键约束用SQL --获取主键约束名字 declare @csname varchar ...

  3. UWP开发学习笔记1

    导航到页面: this.Frame.Navigate(typeof(SecondPage)); 导航进入当前页面时会调用OnNavigatedTo方法:导航从当前页面离开时会调用OnNavigatin ...

  4. C#管理服务停止启动

    由于机器性能问题,把许多服务关闭了,需要用的时候再开启,这样每次都打开服务管理或cmd命令比较麻烦.就自己写了工具显示在桌面上; 声明:ServiceController myController = ...

  5. Leaflet(Esri)初识

    加载本地地图 <html> <head> <metacharset=utf-8/> <title>IdentifyingFeatures</tit ...

  6. Android实现简单音乐播放器(startService和bindService后台运行程序)

    Android实现简单音乐播放器(MediaPlayer) 开发工具:Andorid Studio 1.3运行环境:Android 4.4 KitKat 工程内容 实现一个简单的音乐播放器,要求功能有 ...

  7. 利用docker在window7下安装TensorFlow

    安装过程下碰了不少坑,记录一下安装过程,方便以后有需要时复用. 1.安装docker 下载最新版本的docker并且默认安装即可,安装后打开Docker Quickstart Terminal,初次进 ...

  8. Office Add-in Model 为 Outlook Mail Add-in 提供的 JavaScript API 介绍

    本文所讨论的 Mailbox API是指在 Mail Add-in 中可调用的 JavaScript API.开发者可以利用这些API 实现 Add-in 和 Outlook 的交互(数据读取与写入) ...

  9. 深入解析Windows窗口创建和消息分发(三个核心问题:怎么将不同的窗口过程勾到一起,将不同的hwnd消息分发给对应的CWnd类去处理,CWnd如何简单有效的去处理消息,由浅入深,非常清楚) good

    笔记:争取不用看下面的内容,只看自己的笔记,就能记住这个流程,就算明白了: _tWinMain-->AfxWinMain,它调用四个函数: -->AfxWinInit用于做一些框架的初始化 ...

  10. javaweb各种框架组合案例(二):maven+spring+springMVC+mybatis

    1.mybatis是比较新的半自动orm框架,效率也比较高,优点是sql语句的定制,管理与维护,包括优化,缺点是对开发人员的sql功底要求较高,如果比较复杂的查询,表与表之间的关系映射到对象与对象之间 ...