搭建环境

部署节点操作系统为CentOS,防火墙和SElinux禁用,创建了一个shiyanlou用户并在系统根目录下创建/app目录,用于存放
Hadoop等组件运行包。因为该目录用于安装hadoop等组件程序,用户对shiyanlou必须赋予rwx权限(一般做法是root用户在根目录下
创建/app目录,并修改该目录拥有者为shiyanlou(chown –R shiyanlou:shiyanlou /app)。

Hadoop搭建环境:

  • 虚拟机操作系统: CentOS6.6 64位,单核,1G内存
  • JDK:1.7.0_55 64位
  • Hadoop:1.1.2

2 Mahout介绍

Mahout 是 Apache Software Foundation(ASF)
旗下的一个开源项目,提供一些可扩展的机器学习领域经典算法的实现,旨在帮助开发人员更加方便快捷地创建智能应用程序。AMahout包含许多实现,包括
聚类、分类、推荐过滤、频繁子项挖掘。此外,通过使用 Apache Hadoop 库,Mahout 可以有效地扩展到云中。

Mahout的意思是大象的饲养者及驱赶者。Mahout 这个名称来源于该项目(有时)使用 Apache Hadoop —其徽标上有一头黄色的大象 —来实现可伸缩性和容错性。

Mahout 项目是由 Apache
Lucene(开源搜索)社区中对机器学习感兴趣的一些成员发起的,他们希望建立一个可靠、文档翔实、可伸缩的项目,在其中实现一些常见的用于集群和分类
的机器学习算法。该社区最初基于 Ng et al. 的文章 “Map-Reduce for Machine Learning on
Multicore”(见 参考资料),但此后在发展中又并入了更多广泛的机器学习方法。Mahout 的目标还包括:

  • 建立一个用户和贡献者社区,使代码不必依赖于特定贡献者的参与或任何特定公司和大学的资金。
  • 专注于实际用例,这与高新技术研究及未经验证的技巧相反。
  • 提供高质量文章和示例

3 搭建Mahout环境

3.1 部署过程

3.1.1 下载Mahout

在Apache下载最新的Mahout软件包,点击下载会推荐最快的镜像站点,以下为下载地址:http://archive.apache.org/dist/mahout/0.6/

也可以在/home/shiyanlou/install-pack目录中找到该安装包,解压该安装包并把该安装包复制到/app目录中

  • cd /home/shiyanlou/install-pack
  • tar -xzf mahout-distribution-0.6.tar.gz
  • mv mahout-distribution-0.6 /app/mahout-0.6

3.1.2 设置环境变量

使用如下命令编辑/etc/profile文件:

  • sudo vi /etc/profile

声明mahout的home路径和在path加入bin的路径:

  • export MAHOUT_HOME=/app/mahout-0.6
  • export MAHOUT_CONF_DIR=/app/mahout-0.6/conf
  • export PATH=$PATH:$MAHOUT_HOME/bin

编译配置文件/etc/profile,并确认生效

  • source /etc/profile
  • echo $PATH

3.1.3 验证安装完成

重新登录终端,确保hadoop集群启动,键入mahout --help命令,检查Mahout是否安装完好,看是否列出了一些算法:

  • mahout --help

3.2 测试例子

3.2.1 下载测试数据

下载一个文件synthetic_control.data,下载地址:

http://labfile.oss.aliyuncs.com/courses/237/synthetic_control.data

把这个文件放在$MAHOUT_HOME/testdata目录下

  • cd /home/shiyanlou/install-pack/class9
  • wget
  • mkdir /app/mahout-0.6/testdata
  • mv synthetic_control.data /app/mahout-0.6/testdata

3.2.2 启动Hadoop

通过下面命令启动hadoop并通过jps查看进程

  • cd /app/hadoop-1.1.2/bin
  • ./start-all.sh
  • jps

3.2.3 使用kmeans算法

使用如下命令进行kmeans算法测试:

  • cd /app/mahout-0.6/
  • mahout org.apache.mahout.clustering.syntheticcontrol.kmeans.Job

这里需要说明下,当你看到下面的代码时以为是错的,其实不是,原因:MAHOUT_LOCAL:设置是否本地运行,如果设置该参数就不会在hadoop运行了,一旦设置这个参数那HADOOP_CONF_DIR 和HADOOP_HOME两个参数就自动失效了。

MAHOUT_LOCAL is not set, so we don't add HADOOP_CONF_DIR to classpath.
no HADOOP_HOME set , running locally

3.2.4 查看结果

结果会在根目录建立output新文件夹,如果下图结果表示mahout安装正确且运行正常:

  • cd /app/mahout-0.6/output
  • ll

4 测试例子:运行20newsgroup

4.1 算法流程

朴素贝叶斯分类是一种十分简单的分类算法,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率哪个最大,就认为此待分类项属于哪个类别。

这二十个新闻组数据集合是收集大约20,000新闻组文档,均匀的分布在20个不同的集合。这20个新闻组集合采集最近流行的数据集合到文本程序中
作为实验,根据机器学习技术。例如文本分类,文本聚集。我们将使用Mahout的Bayes
Classifier创造一个模型,它将一个新文档分类到这20个新闻组集合范例演示

4.2 实现过程(mahout 0.6版本)

4.2.1 下载数据并解压数据

下载20Newsgroups数据集,地址为 http://qwone.com/~jason/20Newsgroups/ ,下载20news-bydate.tar.gz数据包,也可以在/home/shiyanlou/install-pack/class9目录中找到该测试数据文件:

解压20news-bydate.tar.gz数据包,解压后可以看到两个文件夹,分别为训练原始数据和测试原始数据:

  • cd /home/shiyanlou/install-pack/class9
  • tar -xzf 20news-bydate.tar.gz

在mahout根目录下建data文件夹,然后把20news训练原始数据和测试原始数据迁移到该文件夹下:

  • mkdir /app/mahout-0.6/data
  • mv 20news-bydate-t* /app/mahout-0.6/data
  • ll /app/mahout-0.6/data

4.2.2 建立训练集

通过如下命令建立训练集,训练的数据在20news-bydate-train目录中,输出的训练集目录为 bayes-train-input:

  • cd /app/mahout-0.6
  • mahout org.apache.mahout.classifier.bayes.PrepareTwentyNewsgroups \
  • -p /app/mahout-0.6/data/20news-bydate-train \
  • -o /app/mahout-0.6/data/bayes-train-input \
  • -a org.apache.mahout.vectorizer.DefaultAnalyzer \
  • -c UTF-8

4.2.3 建立测试集

通过如下命令建立训练集,训练的数据在20news-bydate-test目录中,输出的训练集目录为 bayes-test-input:

  • mahout org.apache.mahout.classifier.bayes.PrepareTwentyNewsgroups \
  • -p /app/mahout-0.6/data/20news-bydate-test \
  • -o /app/mahout-0.6/data/bayes-test-input \
  • -a org.apache.mahout.vectorizer.DefaultAnalyzer \
  • -c UTF-8

4.2.4 上传数据到HDFS

在HDFS中新建/class9/20news文件夹,把生成的训练集和测试集上传到HDFS的/class9/20news目录中:

  • hadoop fs -mkdir /class9/20news
  • hadoop fs -put /app/mahout-0.6/data/bayes-train-input /class9/20news
  • hadoop fs -put /app/mahout-0.6/data/bayes-test-input /class9/20news
  • hadoop fs -ls /class9/20news
  • hadoop fs -ls /class9/20news/bayes-test-input

4.2.5 训练贝叶斯分类器

使用trainclassifier类训练在HDFS中/class9/20news/bayes-train-input的数据,生成的模型放到/class9/ 20news/newsmodel 目录中:

  • mahout trainclassifier \
  • -i /class9/20news/bayes-train-input \
  • -o /class9/20news/newsmodel \
  • -type cbayes \
  • -ng 2 \
  • -source hdfs

4.2.6 观察训练作业运行过程

注:实验楼为命令行界面,无法观测到该步骤界面,以下描述仅做参考
在训练过程中在JobTracker页面观察运行情况,链接地址为http://**.***.**.***:50030/jobtracker.jsp,训练任务四个作业,大概运行了15分钟左右:
点击查看具体作业信息

map运行情况

作业运行情况

4.2.7 查看生成模型

通过如下命令查看模型内容:

  • hadoop fs -ls /class9/20news
  • hadoop fs -ls /class9/20news/newsmodel
  • hadoop fs -ls /class9/20news/newsmodel/trainer-tfIdf

4.2.8 测试贝叶斯分类器

使用testclassifier类训练在HDFS中./20news/bayestest-input的数据,使用的模型路径为./ 20news/newsmodel:

  • mahout testclassifier \
  • -m /class9/20news/newsmodel \
  • -d /class9/20news/bayes-test-input \
  • -type cbayes \
  • -ng 2 \
  • -source hdfs \
  • -method mapreduce

4.2.9 观察训练作业运行过程

注:实验楼为命令行界面,无法观测到该步骤界面,以下描述仅做参考
在执行过程中在JobTracker页面观察运行情况,链接地址为http://hadoop:50030/jobtracker.jsp,训练任务1个作业,大概运行了5分钟左右:
作业的基本信息

map运行情况

reduce运行情况

4.2.10 查看结果

这个混合矩阵的意思说明:上述a到u分别是代表了有20类别,这就是我们之前给的20个输入文件,列中的数据说明每个类别中被分配到的字节个数,classified说明应该被分配到的总数
381 0 0 0 0 9 1 0 0 0 1 0 0 2 0 1 0 0 3 0 0 | 398 a = rec.motorcycles
意思为rec.motorcycles 本来是属于 a,有381篇文档被划为了a类,这个是正确的数据,其它的分别表示划到 b~u类中的数目。我们可以看到其正确率为 381/398=0.9573 ,可见其正确率还是很高的了。

4.3 实现过程(mahout 0.7+版本)

在0.7版本的安装目录下$MAHOUT_HOME/examples/bin下有个脚本文件classifu-20newsgroups.sh,
这个脚本中执行过程是和前面分布执行结果是一致的,只不过将各个API用shell脚本封装到一起了。从0.7版本开始,Mahout移除了命令行调用的
API:prepare20newsgroups、trainclassifier和testclassifier,只能通过shell脚本执行。
执行 $MAHOUT_HOME/examples/bin/classify-20newsgroups.sh 四个选项中选择第一个选项,

执行结果如下:

5 问题解决

5.1 使用mahout0.7+版本对20Newsgroup数据建立训练集时出错

使用如下命令对20Newsgroupt数据建立训练集时:

  • mahout org.apache.mahout.classifier.bayes.PrepareTwentyNewsgroups \
  • -p /app/mahout-0.9/data/20news-bydate-train \
  • -o /app/mahout-0.9/data/bayes-train-input \
  • -a org.apache.mahout.vectorizer.DefaultAnalyzer\
  • -c UTF-8

出现如下错误,原因在于从0.7版本开始,Mahout移除了命令行调用的prepare20newsgroups、
trainclassifier和testclassifier
API,只能通过shell脚本执行$MAHOUT_HOME/examples/bin/classify-20newsgroups.sh进行

14/12/7 21:31:35 WARN driver.MahoutDriver: Unable to add class: org.apache.mahout.classifier.bayes.PrepareTwentyNewsgroups
14/12/7 21:31:35 WARN driver.MahoutDriver: No org.apache.mahout.classifier.bayes.PrepareTwentyNewsgroups.props found on classpath, will use command-line arguments onlyUnknown program 'org.apache.mahout.classifier.bayes.PrepareTwentyNewsgroups' chosen.
Valid program names are:
arff.vector: : Generate Vectors from an ARFF file or directory
baumwelch: : Baum-Welch algorithm for unsupervised HMM training
.......

Mahout介绍、安装与应用案例的更多相关文章

  1. Azkaban介绍+安装部署+实战案例

    Azkaban介绍 什么是azkaban?1.工作流的作业调度系统2.通过k.v指令写法描述工作流节点3.可以通过web界面去管理工作流 Azkaban安装部署 2.3.1 准备工作 Azkaban ...

  2. Apache Flume的介绍安装及简单案例

    概述 Flume 是 一个高可用的,高可靠的,分布式的海量日志采集.聚合和传输的软件.Flume 的核心是把数据从数据源(source)收集过来,再将收集到的数据送到指定的目的地(sink).为了保证 ...

  3. Hadoop入门进阶课程9--Mahout介绍、安装与应用案例

    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,博主为石山园,博客地址为 http://www.cnblogs.com/shishanyuan  ...

  4. _00019 Storm架构介绍和Storm获取案例(简单的官方网站Java案例)

    博文作者:妳那伊抹微笑 itdog8 地址链接 : http://www.itdog8.com(个人链接) 博客地址:http://blog.csdn.net/u012185296 博文标题:_000 ...

  5. _00017 Kafka的体系结构介绍以及Kafka入门案例(0基础案例+Java API的使用)

    博文作者:妳那伊抹微笑 itdog8 地址链接 : http://www.itdog8.com(个人链接) 博客地址:http://blog.csdn.net/u012185296 博文标题:_000 ...

  6. Mahout 的安装

    Mahout 的安装 Mahout是Hadoop的一种高级应用.运行Mahout需要提前安装好Hadoop,Mahout只在Hadoop集群的NameNode节点上安装一个即可,其他数据节点上不需要安 ...

  7. webpack 介绍 & 安装 & 常用命令

    webpack 介绍 & 安装 & 常用命令 webpack系列目录 webpack 系列 一:模块系统的演进 webpack 系列 二:webpack 介绍&安装 webpa ...

  8. [Redis_1] Redis 介绍 && 安装

    0. 说明 Redis 介绍 && 安装 1. Redis 介绍 2. Redis 安装(Windows 10) [2.1 解压 redis-2.2.2-win32-win64.rar ...

  9. Rancher介绍安装以及对docker的管理

    原文:Rancher介绍安装以及对docker的管理 一.简介 Rancher是一个开源的企业级全栈化容器部署及管理平台.Rancher为容器提供一揽子基础架构服务:CNI兼容的网络服务.存储服务.主 ...

随机推荐

  1. 深入分析Java的编译期与运行期

    不知大家有没有思考过,当我们使用IDE写了一个Demo类,并执行main函数打印 hello world时都经历了哪些流程么? 想通过这篇文章来分析分析Java的执行流程,或者换句话说想聊聊Java的 ...

  2. 用原生JS实现AJAX和JSONP

    前端开发在需要与后端进行数据交互时,为了方便快捷,都会选择JQuery中封装的AJAX方法,但是有些时候,我们只需要JQuery的AJAX请求方法,而其他的功能用到的很少,这显然是没必要的.其实,原生 ...

  3. [HAOI2018]苹果树(组合数学,计数)

    [HAOI2018]苹果树 cx巨巨给我的大火题. 感觉这题和上次考试gcz讲的那道有标号树的形态(不记顺序)计数问题很类似. 考虑如果对每个点对它算有贡献的其他点很麻烦,不知怎么下手.这个时候就想到 ...

  4. 用Python写了个下载快手视频的小脚本

    最近又重新拾起了,对python的热情. 贴个地址: https://github.com/d1y/lovepack/blob/master/kuaishou.py 前戏说明 因为我近乎癫狂的喜欢一个 ...

  5. @Validated和@Valid区别

    注解地方 @Validated:可以用在类型.方法和方法参数上.但是不能用在成员属性(字段)上 @Valid:可以用在方法.构造函数.方法参数和成员属性(字段)上 两者是否能用于成员属性(字段)上直接 ...

  6. 简单架构:反射实现抽象工厂+IDAL接口完全独立DAL

    一.普通架构中存在的问题 StudentDB数据库,包含一张StudentInfoTB表,结构如下: s_id int primary key identity(1,1), s_name Nvarch ...

  7. Shell-->变量的数值计算

    1.----------------------------->>>>>文件改名,使用命令mv 2.----------------------------->&g ...

  8. Liunx软件安装之JDK

    在安装 jdk 之前我们需要先了解下 openjdk 跟 oracle jdk 的区别. OpenJDK 是 JDK 的开源码版本,以 GP L 协议的形式发布.在 JDK7 的时候,OpenJDK ...

  9. Java 前后端分离项目:微人事

    本文适合刚学习完 Java 语言基础的人群,跟着本文可了解和运行项目,本示例是在 Windows 操作系统下演示. 本文作者:HelloGitHub-秦人 大家好!这里是 HelloGitHub 推出 ...

  10. java学习之String类

    标签(空格分隔): String类 String 的概述 class StringDemo{ public static void main(String[] args){ String s1=&qu ...