题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1218

题解:先要确定这些点是不是属于最长递增序列然后再确定这些数在最长递增序列中出现的次数,如果大于1次显然是可能出现只出现1次肯定是必然出现。那么就是怎么判断是不是属于最长递增序列,这个只要顺着求一下最长递增标一下该点属于长度几然后再逆着求一下最长递减标一下该点属于长度几如果两个下标之和等于最长长度+1那么该点就属于最长递增序列,然后就是求1~len(len表示最长的长度)中各个长度出现的次数就行。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#define inf 0X3f3f3f3f
using namespace std;
const int M = 5e4 + 10;
int a[M] , b[M] , dpa[M] , dpb[M] , vis[M];
bool vs[M];
int binsearch(int l , int r , int num) {
int mid = (l + r) >> 1;
int ans = 0;
while(l <= r) {
mid = (l + r) >> 1;
if(b[mid] > num) r = mid - 1;
else {
ans = mid;
l = mid + 1;
}
}
return ans;
}
int binsearch2(int l , int r , int num) {
int mid = (l + r) >> 1;
int ans = 0;
while(l <= r) {
mid = (l + r) >> 1;
if(b[mid] < num) r = mid - 1;
else {
ans = mid;
l = mid + 1;
}
}
return ans;
}
int main() {
int n;
scanf("%d" , &n);
for(int i = 1 ; i <= n ; i++) scanf("%d" , &a[i]);
int len = 0;
b[0] = -1;
for(int i = 1 ; i <= n ; i++) {
if(a[i] > b[len]) {
len++;
b[len] = a[i];
dpa[i] = len;
continue;
}
else {
int pos = binsearch(1 , len , a[i]);
b[pos + 1] = min(b[pos + 1] , a[i]);
dpa[i] = pos + 1;
}
}
int len2 = 0;
memset(b , inf , sizeof(b));
for(int i = n ; i >= 1 ; i--) {
if(a[i] < b[len2]) {
len2++;
b[len2] = a[i];
dpb[i] = len2;
}
else {
int pos = binsearch2(1 , len2 , a[i]);
b[pos + 1] = max(b[pos + 1] , a[i]);
dpb[i] = pos + 1;
}
}
memset(vs , false , sizeof(vs));
for(int i = 1 ; i <= n ; i++) {
if(dpa[i] + dpb[i] == len + 1) {
vis[dpa[i]]++;
vs[i] = true;
}
}
printf("A:");
for(int i = 1 ; i <= n ; i++) {
if(vis[dpa[i]] > 1 && vs[i]) printf("%d " , i);
}
printf("\n");
printf("B:");
for(int i = 1 ; i <= n ; i++) {
if(vis[dpa[i]] == 1 && vs[i]) printf("%d " , i);
}
printf("\n");
return 0;
}

51nod 1218 最长递增子序列 V2(dp + 思维)的更多相关文章

  1. [51Nod 1218] 最长递增子序列 V2 (LIS)

    传送门 Description 数组A包含N个整数.设S为A的子序列且S中的元素是递增的,则S为A的递增子序列.如果S的长度是所有递增子序列中最长的,则称S为A的最长递增子序列(LIS).A的LIS可 ...

  2. 51nod 1218 最长递增子序列 V2——LIS+思路(套路)

    题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1218 自己怎么连这种 喜闻乐见的大水题 都做不出来了…… 好像见过 ...

  3. [51Nod] 1218 最长递增子序列 V2

    如何判断一个元素是否一定在LIS中?设f[i]为以ai结尾的LIS长度,g[i]为以ai开头的LIS长度,若f[i]+g[i]-1==总LIS,那么i就一定在LIS中出现 显然只出现一次的元素一定是必 ...

  4. 51nod 1218 最长递增子序列 | 思维题

    51nod 1218 最长递增子序列 题面 给出一个序列,求哪些元素可能在某条最长上升子序列中,哪些元素一定在所有最长上升子序列中. 题解 YJY大嫂教导我们,如果以一个元素结尾的LIS长度 + 以它 ...

  5. 51nod 1134 最长递增子序列

    题目链接:51nod 1134 最长递增子序列 #include<cstdio> #include<cstring> #include<algorithm> usi ...

  6. 51nod 1376 最长递增子序列的数量(线段树)

    51nod 1376 最长递增子序列的数量 数组A包含N个整数(可能包含相同的值).设S为A的子序列且S中的元素是递增的,则S为A的递增子序列.如果S的长度是所有递增子序列中最长的,则称S为A的最长递 ...

  7. LCS 51Nod 1134 最长递增子序列

    给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10.   Input 第1行:1个 ...

  8. 51NOD 1376 最长递增子序列的数量 [CDQ分治]

    1376 最长递增子序列的数量 首先可以用线段树优化$DP$做,转移时取$0...a[i]$的最大$f$值 但我要练习$CDQ$ $LIS$是二维偏序问题,偏序关系是$i<j,\ a_i< ...

  9. 51Nod 1376 最长递增子序列的数量 —— LIS、线段树

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1376 1376 最长递增子序列的数量 基准时间限制:1 秒 空 ...

随机推荐

  1. unity3d立方体碰撞检测(c#代码实现)

    由于unity自带的碰撞组件特别耗费性能,网上的unity物体碰撞的c#代码实现比较少,没有适合的,只能自己写一个来用: using System; using System.Collections. ...

  2. .net持续集成测试篇之Nunit常见断言

    系列目录 Nunit测试基础之简单断言 在开始本篇之前需要补充一些内容,通过前面搭建Nunit测试环境我们知道要使一个方法成为单元测试方法首先要在此方法所在类加上TestFixture注解,并且在该方 ...

  3. Codeforces Round #219(Div. 2)373 B. Making Sequences is Fun(二分+找规律)

    题目意思大概是给你w,m,k三个数,让你从m开始找 m m+1 m+2 m+3...........m+m', 使得他们的权值之和不超过w,计算权值的方法如下S(n)·k . S(n)表示n有多少位数 ...

  4. git的使用(一)

    git   —version  展示git的版本 tanya ~$ git --version git version 2.22.0 最小配置   git config —global user.na ...

  5. 记录eclipse中文出现空格宽度不一致的bug

    起因 不久前更新了 eclipse(2019-03) 版本:突然发现出现了,使用注释使用中出现的空格的间隔大小不一致的问题,具体可以看下图: 遇到这种问题简直逼不能忍,在网上搜一下解决方式: 谷歌 搜 ...

  6. 简洁明了的Noip考场策略 / 平时做题也适用

    1.选择策略: 评估的标准得分的难度不是AC的难度 2.思考问题: 怀疑的眼光审视自己 3.写代码前: 想想可不可以换一种代码实现会好写很多 把自己的思路再理一遍,可以写到纸上,记下来大致关键顺序 4 ...

  7. 程序员修神之路--用NOSql给高并发系统加速(送书)

    随着互联网大潮的到来,越来越多网站,应用系统需要海量数据的支撑,高并发.低延迟.高可用.高扩展等要求在传统的关系型数据库中已经得不到满足,或者说关系型数据库应对这些需求已经显得力不从心了.关系型数据库 ...

  8. 认识Redies

    既然是作为了解性文章,那必然不会做很深入的解读.深入的解读以后会加上. 我们先来回答两个问题.通过这两个问题来开始我们的Redies入门之旅. Redies是什么? Redies有什么作用? Redi ...

  9. 2321. 【NOIP普及组T1】方程

    2321. [NOIP普及组T1]方程 时间限制: 1000 ms  空间限制: 262144 KB 题目描述

  10. wordpress修改登录密码

    wordpress忘记密码更改 网上搜到的方法: 1.后台邮件重置: 2,phpmyadmin登录数据库,执行mysql语句或者在wp_users表中重置密码: 3,利用php文件重置. 这是提供一种 ...