这是一道模板题。

给你两个多项式,请输出乘起来后的多项式。

输入格式

第一行两个整数 nn 和 mm,分别表示两个多项式的次数。

第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项系数。

第三行 m+1m+1 个整数,表示第二个多项式的 00 到 mm 次项系数。

输出格式

一行 n+m+1n+m+1 个整数,表示乘起来后的多项式的 00 到 n+mn+m 次项系数。

样例一

input

1 2
1 2
1 2 1

output

1 4 5 2

explanation

(1+2x)⋅(1+2x+x2)=1+4x+5x2+2x3(1+2x)⋅(1+2x+x2)=1+4x+5x2+2x3。

限制与约定

0≤n,m≤1050≤n,m≤105,保证输入中的系数大于等于 00 且小于等于 99。

时间限制:1s1s

空间限制:256MB

AC代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define N 2300003
#define pi acos(-1)
using namespace std;
struct data{
double x,y;
data (double X=0,double Y=0) {
x=X,y=Y;
}
}a[N],b[N],c[N];
data operator +(data a,data b){ return data(a.x+b.x,a.y+b.y); }
data operator -(data a,data b){ return data(a.x-b.x,a.y-b.y); }
data operator *(data a,data b){ return data(a.x*b.x-a.y*b.y,a.y*b.x+b.y*a.x); }
int n,m,L,R[N];
char s[N];
void fft(data a[N],int opt)
{
for (int i=0;i<n;i++)
if (i<R[i]) swap(a[i],a[R[i]]);
for(int i=1;i<n;i<<=1){
data wn=data(cos(pi/i),opt*sin(pi/i));
for (int p=i<<1,j=0;j<n;j+=p) {
data w=data(1,0);
for (int k=0;k<i;k++,w=w*wn){
data x=a[j+k],y=w*a[j+k+i];
a[j+k]=x+y; a[j+k+i]=x-y;
}
}
}
}
int main()
{
//freopen("a.in","r",stdin);
scanf("%d%d",&n,&m);
for (int i=0;i<=n;i++) scanf("%lf",&a[i].x);
for (int i=0;i<=m;i++) scanf("%lf",&b[i].x);
m=n+m;
for (n=1;n<=m;n<<=1) L++;
for (int i=0;i<n;i++)
R[i]=(R[i>>1]>>1)|((i&1)<<(L-1));//位逆序置换
fft(a,1); fft(b,1);
for (int i=0;i<=n;i++) a[i]=a[i]*b[i];
fft(a,-1);
for (int i=0;i<=m;i++)
printf("%d ",(int)(a[i].x/n+0.5));
printf("\n");
}

  

UOJ 34 多项式乘法 FFT 模板的更多相关文章

  1. [UOJ#34]多项式乘法

    [UOJ#34]多项式乘法 试题描述 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入 第一行两个整数 n 和 m,分别表示两个多项式的次数. 第二行 n+1 个整数,分别表示第一个多 ...

  2. ●UOJ 34 多项式乘法

    题链: http://uoj.ac/problem/34 题解: FFT入门题. (终于接触到迷一样的FFT了) 初学者在对复数和单位根有简单了解的基础上,可以直接看<再探快速傅里叶变换> ...

  3. UOJ 34: 多项式乘法(FFT模板题)

    关于FFT 这个博客的讲解超级棒 http://blog.miskcoo.com/2015/04/polynomial-multiplication-and-fast-fourier-transfor ...

  4. 2018.11.14 uoj#34. 多项式乘法(fft)

    传送门 NOIpNOIpNOIp爆炸不能阻止我搞oioioi的决心 信息技术课进行一点康复训练. fftfftfft板题. 代码: #include<bits/stdc++.h> usin ...

  5. 【刷题】UOJ #34 多项式乘法

    这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 \(n\) 和 \(m\) ,分别表示两个多项式的次数. 第二行 \(n+1\) 个整数,表示第一个多项式的 \( ...

  6. UOJ#34. 多项式乘法(NTT)

    这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...

  7. UOJ 34 多项式乘法 ——NTT

    [题目分析] 快速数论变换的模板题目. 与fft的方法类似,只是把复数域中的具有循环性质的单位复数根换成了模意义下的原根. 然后和fft一样写就好了,没有精度误差,但是跑起来比较慢. 这破题目改了好长 ...

  8. 2018.11.14 uoj#34. 多项式乘法(ntt)

    传送门 今天学习nttnttntt. 其实递归方法和fftfftfft是完全相同的. 只不过fftfftfft的单位根用的是复数中的东西,而nttnttntt用的是数论里面有相同性质的原根. 代码: ...

  9. [UOJ 0034] 多项式乘法

    #34. 多项式乘法 统计 描述 提交 自定义测试 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+ ...

随机推荐

  1. Android 虹软人脸识别SDK-人脸对比

    准备 : 登录官方网站,获取SDK,进行个人验证后新建项目,获取APP_ID,和SDK_KEY: https://ai.arcsoft.com.cn/ucenter/resource/build/in ...

  2. 定制开发kubernetes流程

    kubernetes集群三步安装 概述 本文介绍如何对kubernetes进行二次开发,仓库如何管理,git分支如何管理,怎样利用CI去编译与发布以及如何给社区贡献代码等,结合实际例子,望对大家有所帮 ...

  3. java 各基本类型转 bytes 数组

    java 将 基本类型转byte[] 数组时,需考虑大端小端问题 1. 大端格式下,基本类型与byte[]互转 BigByteUtil.java package com.ysq.util; impor ...

  4. 【Java例题】6.1 进制转换

    1.进制转换.输入一个某种进制的整数,将其转换为其它进制的整数.说明:仅考虑十.二.八和十六进制. package chapter6; import java.util.*; public class ...

  5. [NUnit]No results

    Results (nunit3) saved as TestResult.xmlCommitting...No results, this could be for a number of reaso ...

  6. 逛公园「NOIP2017」最短路+DP

    大家好我叫蒟蒻,这是我的第一篇信竞题解blog [题目描述] 策策同学特别喜欢逛公园. 公园可以看成一张 \(N\) 个点 \(M\) 条边构成的有向图,且没有自环和重边.其中 \(1\) 号点是公园 ...

  7. Shell脚本书写规范

    在日常的运维工作中,Shell脚本肯定是必不可少的工作内容.为方便问题排查.脚本执行历史问题追踪.方便大家共同维护,从网上搜罗结合以往的经验教训拟定以下Bash脚本书写规范.欢迎各位同学指正或补充. ...

  8. (三十三)c#Winform自定义控件-日期控件

    前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. 开源地址:https://gitee.com/kwwwvagaa/net_winform_custom_control ...

  9. 探究光线追踪技术及UE4的实现

    目录 一.光线追踪概述 1.1 光线追踪是什么 1.2 光线追踪的特点 1.3 光线追踪的历史 1.4 光线追踪的应用 二.光线追踪的原理 2.1 光线追踪的物理原理 2.2 光线追踪算法 2.3 R ...

  10. grep文本搜索工具详解

    ############grep命令############这个命令属于文本处理三大命令之一,强大的文本搜索工具(贪婪模式)全面搜索正则表达式并把行打印出来)是一种强大的文本搜索工具,它能使用正则表达 ...