版权声明:本文为CSDN博主「梵解君」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。

原文链接:https://blog.csdn.net/hadeso/article/details/12622743

--------------------------------------------------------------------------------------------------------------------

解法1:我们可以把棋盘的左下角看做二维坐标的原点(0,0),把棋盘的右上角看做二维坐标(m,n)(坐标系的单位长度为小方格的变长)

f(i, j)表示移动到坐标f(i, j)的走法总数,其中0=<i, j<=n,设f(m, n)代表从坐标(0,0)到坐标(m,n)的移动方法,

f(m, n) = f(m-1, n) + f(m, n-1).

于是状态f(i, j)的状态转移方程为:

f(i, j) = f(i-1, j) + f(i, j-1)    if i, j>0

f(i, j) = f(i, j-1)                  if i=0

f(i, j) = f(i-1, j)                  if j=0

优化的状态f(i, j)的状态转移方程为:

递归结束条件为:f(0,0)=0, f(0,1)=1, f(1,0)=1。这个问题可以在时间O(n^2),空间O(n^2)内求解。

递归解法

//递归解法
int process(int m, int n) {
//永远不可能达到m & n同时为0的条件,除非输入m=n=0
if (m == 0 && n == 0)
return 0;
if (m == 0 || n == 0)
return 1;
return process(m, n - 1) + process(m - 1, n);
}

非递归解法

int processNew(int m,int n){
int **Q=new int*[m+1];
for(int i=0; i<=m; ++i){
Q[i]=new int[n+1]();
}
//初始化
Q[0][0]=0;
for(int j=1; j<=n; ++j)
Q[0][j]=1;
for(int i=1; i<=m; ++i)
Q[i][0]=1;
//迭代计算
for(int i=1; i<=m; ++i){
for(int j=1; j<=n; ++j){
Q[i][j]=Q[i-1][j]+Q[i][j-1];
}
}
int res=Q[m][n];
delete [] Q;
return res;
}

  

解法2:这个题目其实是一个组合问题。对方向编号,向上是0,向右是1,那么从左下角走到右上角一定要经过M 个1和N个0。这个题目可以转化为从M+N个不同的盒子中挑出M个盒子有多少种方法。答案是C(M+N, M),或者C(M+N, N)的组合数

【排列组合】给定一个M*N的格子或棋盘,从左下角走到右上角的走法总数(每次只能向右或向上移动一个方格边长的距离)的更多相关文章

  1. nyoj1076-方案数量 【排列组合 dp】

    http://acm.nyist.net/JudgeOnline/problem.php?pid=1076 方案数量 时间限制:1000 ms  |  内存限制:65535 KB 难度:2   描述 ...

  2. 一个n*n 的方格,要从左上角走到右下角,一次只能往右或往下走一步,求算法得出所有走动的方法数。

    题目一:一个n*n 的方格,要从左上角走到右下角,一次只能往右或往下走一步,求算法得出所有走动的方法数. 分析:对于第(i,j)个格子,只有向右走一步到达或者向左走一步到达,dp(i,j) = d(i ...

  3. 给定数组a[1,2,3],用a里面的元素来生成一个长度为5的数组,打印出其排列组合

    给定数组a[1,2,3],用a里面的元素来生成一个长度为5的数组,打印出其排列组合 ruby代码: def all_possible_arr arr, length = 5 ret = [] leng ...

  4. js 排列 组合 的一个简单例子

    最近工作项目需要用到js排列组合,于是就写了一个简单的demo. 前几天在网上找到一个写全排列A(n,n)的code感觉还可以,于是贴出来了, 排列的实现方式: 全排列主要用到的是递归和数组的插入 比 ...

  5. C++写一个排列组合小程序

    今天突然想到一个问题,有时候,针对同一个事件有多种反映,特别是游戏AI当中,这种情况下需要采取最适合的方案,哪种方案最适合,可以将每种方案的结果或影响都计算一遍,从而选择最合适的.最基本就是一个排列组 ...

  6. PHP的排列组合问题 分别从每一个集合中取出一个元素进行组合,问有多少种组合?

    首先说明这是一个数学的排列组合问题C(m,n) = m!/(n!*(m-n)!) 比如:有集合('粉色','红色','蓝色','黑色'),('38码','39码','40码'),('大号','中号') ...

  7. 【原创】开源.NET排列组合组件KwCombinatorics使用(三)——笛卡尔积组合

           本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...

  8. 【原创】开源.NET排列组合组件KwCombinatorics使用(二)——排列生成

           本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...

  9. 【原创】开源.NET排列组合组件KwCombinatorics使用(一)—组合生成

           本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...

随机推荐

  1. 朱晔和你聊Spring系列S1E11:小测Spring Cloud Kubernetes @ 阿里云K8S

    有关Spring Cloud Kubernates(以下简称SCK)详见https://github.com/spring-cloud/spring-cloud-kubernetes,在本文中我们主要 ...

  2. Mybatis的xml文件对大于号小于号的特殊处理!

    当我们需要通过xml格式处理sql语句时,经常会用到< ,<=,>,>=等符号,但是很容易引起xml格式的错误,这样会导致后台将xml字符串转换为xml文档时报错,从而导致程序 ...

  3. Ubuntu下安装并使用sublime text 3(建议:先安装Package controls 后在看本教程,否则可能会安装不了)

    首先从Sublime Text官网下载合适的包 然后使用 tar -xvvf sublime_text_3_build_3207_x64.tar.bz2 解压: 再使用 mv sublime_text ...

  4. php无限级分类实战——评论及回复功能

    经常在各大论坛或新闻板块详情页面下边看到评论功能,当然不单单是直接发表评论内容那么简单,可以对别人的评论进行回复,别人又可以对你的回复再次评论或回复,如此反复,理论上可以说是没有休止,从技术角度分析很 ...

  5. vue解决刷新时闪烁

    原文地址:原文地址 1.在vue容器的div里面加上 v-cloak <div id="app" v-cloak> 2.样式文件中加上 <style type=& ...

  6. 夯实Java基础系列23:一文读懂继承、封装、多态的底层实现原理

    本系列文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到我的仓库里查看 https://github.com/h2pl/Java-Tutorial 喜欢的话麻烦点下 ...

  7. 设计模式----创建型型模式之单件模式(Singleton pattern)

    单件模式,又称单例模式,确保一个类只有一个实例,并提供全局访问点. 单件模式是比较简单且容易理解的一种设计模式.只有一个实例,通常的做法...TODO 类图比较简单,如下所示: 示例代码: 懒汉模式( ...

  8. 02-05 scikit-learn库之线性回归

    目录 scikit-learn库之线性回归 一.LinearRegression 1.1 使用场景 1.2 代码 1.3 参数详解 1.4 属性 1.5 方法 1.5.1 报告决定系数 二.ARDRe ...

  9. C# 获取顶级(一级)域名方法

    /// <summary> /// 获取域名的顶级域名 /// </summary> /// <param name="domain">< ...

  10. C# Foreach循环本质与枚举器

    对于C#里面的Foreach学过 语言的人都知道怎么用,但是其原理相信很多人和我一样都没有去深究.刚回顾泛型讲到枚举器让我联想到了Foreach的实现,所以进行一番探究,有什么不对或者错误的地方大家多 ...