【排列组合】给定一个M*N的格子或棋盘,从左下角走到右上角的走法总数(每次只能向右或向上移动一个方格边长的距离)
版权声明:本文为CSDN博主「梵解君」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/hadeso/article/details/12622743
--------------------------------------------------------------------------------------------------------------------
解法1:我们可以把棋盘的左下角看做二维坐标的原点(0,0),把棋盘的右上角看做二维坐标(m,n)(坐标系的单位长度为小方格的变长)
用f(i, j)表示移动到坐标f(i, j)的走法总数,其中0=<i, j<=n,设f(m, n)代表从坐标(0,0)到坐标(m,n)的移动方法,
则f(m, n) = f(m-1, n) + f(m, n-1).
于是状态f(i, j)的状态转移方程为:
f(i, j) = f(i-1, j) + f(i, j-1) if i, j>0
f(i, j) = f(i, j-1) if i=0
f(i, j) = f(i-1, j) if j=0
优化的状态f(i, j)的状态转移方程为:
递归结束条件为:f(0,0)=0, f(0,1)=1, f(1,0)=1。这个问题可以在时间O(n^2),空间O(n^2)内求解。
递归解法
//递归解法
int process(int m, int n) {
//永远不可能达到m & n同时为0的条件,除非输入m=n=0
if (m == 0 && n == 0)
return 0;
if (m == 0 || n == 0)
return 1;
return process(m, n - 1) + process(m - 1, n);
}
非递归解法
int processNew(int m,int n){
int **Q=new int*[m+1];
for(int i=0; i<=m; ++i){
Q[i]=new int[n+1]();
}
//初始化
Q[0][0]=0;
for(int j=1; j<=n; ++j)
Q[0][j]=1;
for(int i=1; i<=m; ++i)
Q[i][0]=1;
//迭代计算
for(int i=1; i<=m; ++i){
for(int j=1; j<=n; ++j){
Q[i][j]=Q[i-1][j]+Q[i][j-1];
}
}
int res=Q[m][n];
delete [] Q;
return res;
}
解法2:这个题目其实是一个组合问题。对方向编号,向上是0,向右是1,那么从左下角走到右上角一定要经过M 个1和N个0。这个题目可以转化为从M+N个不同的盒子中挑出M个盒子有多少种方法。答案是C(M+N, M),或者C(M+N, N)的组合数。
【排列组合】给定一个M*N的格子或棋盘,从左下角走到右上角的走法总数(每次只能向右或向上移动一个方格边长的距离)的更多相关文章
- nyoj1076-方案数量 【排列组合 dp】
http://acm.nyist.net/JudgeOnline/problem.php?pid=1076 方案数量 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描述 ...
- 一个n*n 的方格,要从左上角走到右下角,一次只能往右或往下走一步,求算法得出所有走动的方法数。
题目一:一个n*n 的方格,要从左上角走到右下角,一次只能往右或往下走一步,求算法得出所有走动的方法数. 分析:对于第(i,j)个格子,只有向右走一步到达或者向左走一步到达,dp(i,j) = d(i ...
- 给定数组a[1,2,3],用a里面的元素来生成一个长度为5的数组,打印出其排列组合
给定数组a[1,2,3],用a里面的元素来生成一个长度为5的数组,打印出其排列组合 ruby代码: def all_possible_arr arr, length = 5 ret = [] leng ...
- js 排列 组合 的一个简单例子
最近工作项目需要用到js排列组合,于是就写了一个简单的demo. 前几天在网上找到一个写全排列A(n,n)的code感觉还可以,于是贴出来了, 排列的实现方式: 全排列主要用到的是递归和数组的插入 比 ...
- C++写一个排列组合小程序
今天突然想到一个问题,有时候,针对同一个事件有多种反映,特别是游戏AI当中,这种情况下需要采取最适合的方案,哪种方案最适合,可以将每种方案的结果或影响都计算一遍,从而选择最合适的.最基本就是一个排列组 ...
- PHP的排列组合问题 分别从每一个集合中取出一个元素进行组合,问有多少种组合?
首先说明这是一个数学的排列组合问题C(m,n) = m!/(n!*(m-n)!) 比如:有集合('粉色','红色','蓝色','黑色'),('38码','39码','40码'),('大号','中号') ...
- 【原创】开源.NET排列组合组件KwCombinatorics使用(三)——笛卡尔积组合
本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...
- 【原创】开源.NET排列组合组件KwCombinatorics使用(二)——排列生成
本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...
- 【原创】开源.NET排列组合组件KwCombinatorics使用(一)—组合生成
本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...
随机推荐
- .net core 3.0 Signalr - 02 使用强类型的Hub
## 强类型的优缺点 - 优点 强类型的Hub可以避免魔法函数名,相比弱类型更容易维护和发现问题,直接上代码 - 缺点 特么的得多些好几行代码 ## 代码 ### 接口定义 ``` C# /// // ...
- AVR单片机教程——数字IO寄存器
前两篇教程中我们学习了LED.按键.开关的基本原理,数字输入输出的使用以及两者之间的关系.我们用到了 pin_mode . pin_read 和 pin_write 这三个函数,实际上它们离最底层(至 ...
- 中缀表达式转后缀表达式(Java代码实现)
后缀表达式求值 后缀表达式又叫逆波兰表达式,其求值过程可以用到栈来辅助存储.例如要求值的后缀表达式为:1 2 3 + 4 * + 5 -,则求值过程如下: 遍历表达式,遇到数字时直接入栈,栈结构如下 ...
- 挑战程序设计——迷宫的最短路径(BFS)
题目详情 Description 给定一个大小为 N * M 的迷宫.迷宫由通道和墙壁组成,每一步可以向邻接的上下左右四格的通道移动.请求出从起点到终点所需的最小步数 限制条件: N,M <= ...
- 实现一个3D图片轮播插件 —— 更新版
前言: 前段时间写下了之前那篇 3D图片轮播效果,后来发现了 Pedro Botelho 写的jquery.gallery.js ,于是重新修改了自己的这个图片轮播,使之可以成为一个插件来使用 ...
- Flutter中TabBarView切换状态保存
TabBarView 类似于Android中的viewPager,但是默认是没有实现切换分页状态保存的.估计是出于节约内存的原因吧. 发现这个问题的时候,搜索了一下全网.大致就两种解决方案,1是修改源 ...
- 详述Python序列化
一.前言 1. 现实需求 每种编程语言都有各自的数据类型,其中面向对象的编程语言还允许开发者自定义数据类型(如:自定义类),Python也是一样.很多时候我们会有这样的需求: 把内存中的各种数据类型的 ...
- sqli-labs靶机注入笔记1-10关
嗯,开始记录sqli-lab的每关笔记,复习一次 1-2关 基于错误的字符串/数字型注入 闭合的符号有区别而已 http://www.sqli-lab.cn/Less-1/?id=1 or 1=1 - ...
- Web渗透之mssql LOG备份getshell
log备份的总结 当SQL注入是得到DB权限时候,接下来可以做的工作很多,象找管理员密码,后台管理这些都可以帮助你拿到WEBSHELL,但是这篇文章讲的是log备份,LOG备份出来的小马的体积小,而且 ...
- Python3+RobotFramework+pycharm环境搭建
我的环境为 python3.6.5+pycharm 2019.1.3+robotframework3.1.2 1.安装python3.x 略 之后在cmd下执行:pip install robot ...