一、简介

  categorical是pandas中对应分类变量的一种数据类型,与R中的因子型变量比较相似,例如性别、血型等等用于表征类别的变量都可以用其来表示,本文就将针对categorical的相关内容及应用进行介绍。

二、创建与应用

2.1 基本特性和适用场景

  在介绍具体方法之前,我们需要对pandas数据类型中的categorical类型有一个了解,categorical类似R中的因子型变量,可以进行排序操作,但不可以进行数值运算操作,其顺序在其被定义的时候一同确定,而不是按照数字字母词法排序的顺序,其适用场景有如下几个:

  1、具有少数几种可能取值并存在大量重复的字符串字段,利用categorical类型对其转换后可有效节省内存

  2、字段的排序规则特殊,不遵循词法顺序时,可以利用categorical类型对其转换后得到用户所需的排序规则、

2.2 创建方式

  pandas中创建categorical型数据主要有如下几种方式:

  1、对于Series数据结构,传入参数dtype='category'即可:

#直接创建categorical型Series
series_cat = pd.Series(['B','D','C','A'], dtype='category')
#显示Series信息
series_cat

  可以看到,series_cat的类型为category,但是没有声明顺序,这时若对Series排序,实际上还是按照词法的顺序:

series_cat.sort_values()

  2、对于DataFrame,在定义数据之后转换类型:

#创建数据框
df_cat = pd.DataFrame({
'V1':['A','C','B','D']
})
#转换指定列的数据类型为category
df_cat['V1'] = df_cat['V1'].astype('category')
df_cat['V1']

  3、利用pd.Categorical()生成类别型数据后转换为Series,或替换DataFrame中的内容:

categorical_ = pd.Categorical(['A','B','D','C'],
categories=['A','B','C','D'])
series_cat = pd.Series(categorical_)
series_cat

categorical_ = pd.Categorical(['A','B','D','C'],
categories=['A','B','C','D'])
df_cat = pd.DataFrame({
'V1':categorical_
})
df_cat['V1']

  而pd.Categorical()独立创建categorical数据时有两个新的特性,一是其通过参数categories定义类别时,若原数据中出现了categories参数中没有的数据,则会自动转换为pd.nan:

categorical_ = pd.Categorical(['A','B','D','C'],
categories=['B','C','D'])
df_cat = pd.DataFrame({
'V1':categorical_
})
df_cat['V1']

  另外pd.Categorical()还有一个bool型参数ordered,设置为True时则会按照categories中的顺序定义从小到大的范围:

categorical_ = pd.Categorical(['A','B','D','C'],
categories=['A','B','C','D'],
ordered=True)
df_cat = pd.DataFrame({
'V1':categorical_
})
df_cat['V1']

  4、利用pandas.api.types中的CategoricalDtype()对已有数据进行转换

  通过CategoricalDtype(),我们可以结合astype()完成从其他类型数据向categorical数据的转换过程,利用CategoricalDtype()的参数categories、ordered,弥补.astype('category')的短板(实际上.astype('category')等价于.astype(CategoricalDtype(categories=None, ordered=False))):

from pandas.api.types import CategoricalDtype
#创建数据框
df_cat = pd.DataFrame({
'V1':['A','C','B','D']
})
cat = CategoricalDtype(categories=['A','C','B'],
ordered=True)
df_cat['V1'] = df_cat['V1'].astype(cat)
df_cat['V1']

  

2.3 应用

  categorical型数据主要应用于自定义排序,如下例,我们创建了一个包含字符型变量class和数值型变量value的数据框:

import numpy as np

df = pd.DataFrame({
'class':np.random.choice(['A','B','C','D'],10),
'value':np.random.uniform(0,10,10)
})
df.head()

  如果按照class列排序得到的结果是按照字母自然顺序:

df.sort_values('class')

  而通过将class列修改为自己定义的排序方式则得到的结果如下:

from pandas.api.types import CategoricalDtype
cat = CategoricalDtype(categories=['B','D','A','C'],
ordered=True)
df['class'] = df['class'].astype(cat)
df.sort_values('class')

  若想要临时修改排序规则,可以使用.cat.reorder_categories()方法:

df['class'].cat.reorder_categories(['D','B','C','A'],
ordered=True,
inplace=True)#iinplace参数设置为True使得变动覆盖原数据
df.sort_values('class')

  关于pandas中的categorical型数据还有很多的小技巧,因为不常用这里就不再赘述,感兴趣可以查看pandas的官方文档,以上就是本文的全部内容,如有笔误望指出!

(数据科学学习手札68)pandas中的categorical类型及应用的更多相关文章

  1. (数据科学学习手札32)Python中re模块的详细介绍

    一.简介 关于正则表达式,我在前一篇(数据科学学习手札31)中已经做了详细介绍,本篇将对Python中自带模块re的常用功能进行总结: re作为Python中专为正则表达式相关功能做出支持的模块,提供 ...

  2. (数据科学学习手札42)folium进阶内容介绍

    一.简介 在上一篇(数据科学学习手札41)中我们了解了folium的基础内容,实际上folium在地理信息可视化上的真正过人之处在于其绘制图像的高度可定制化上,本文就将基于folium官方文档中的一些 ...

  3. (数据科学学习手札69)详解pandas中的map、apply、applymap、groupby、agg

    *从本篇开始所有文章的数据和代码都已上传至我的github仓库:https://github.com/CNFeffery/DataScienceStudyNotes 一.简介 pandas提供了很多方 ...

  4. (数据科学学习手札72)用pdpipe搭建pandas数据分析流水线

    1 简介 在数据分析任务中,从原始数据读入,到最后分析结果出炉,中间绝大部分时间都是在对数据进行一步又一步的加工规整,以流水线(pipeline)的方式完成此过程更有利于梳理分析脉络,也更有利于查错改 ...

  5. (数据科学学习手札49)Scala中的模式匹配

    一.简介 Scala中的模式匹配类似Java中的switch语句,且更加稳健,本文就将针对Scala中模式匹配的一些基本实例进行介绍: 二.Scala中的模式匹配 2.1 基本格式 Scala中模式匹 ...

  6. (数据科学学习手札44)在Keras中训练多层感知机

    一.简介 Keras是有着自主的一套前端控制语法,后端基于tensorflow和theano的深度学习框架,因为其搭建神经网络简单快捷明了的语法风格,可以帮助使用者更快捷的搭建自己的神经网络,堪称深度 ...

  7. (数据科学学习手札47)基于Python的网络数据采集实战(2)

    一.简介 马上大四了,最近在暑期实习,在数据挖掘的主业之外,也帮助同事做了很多网络数据采集的内容,接下来的数篇文章就将一一罗列出来,来续写几个月前开的这个网络数据采集实战的坑. 二.马蜂窝评论数据采集 ...

  8. (数据科学学习手札40)tensorflow实现LSTM时间序列预测

    一.简介 上一篇中我们较为详细地铺垫了关于RNN及其变种LSTM的一些基本知识,也提到了LSTM在时间序列预测上优越的性能,本篇就将对如何利用tensorflow,在实际时间序列预测任务中搭建模型来完 ...

  9. (数据科学学习手札80)用Python编写小工具下载OSM路网数据

    本文对应脚本已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 我们平时在数据可视化或空间数据分析的过程中经常会 ...

随机推荐

  1. 【Demo 1】基于object_detection API的行人检测 1:环境与依赖

    环境 系统环境: win10.python3.6.tensorflow1.14.0.OpenCV3.8 IDE: Pycharm 2019.1.3.JupyterNotebook 依赖 安装objec ...

  2. sklearn学习 第一篇:knn分类

    K临近分类是一种监督式的分类方法,首先根据已标记的数据对模型进行训练,然后根据模型对新的数据点进行预测,预测新数据点的标签(label),也就是该数据所属的分类. 一,kNN算法的逻辑 kNN算法的核 ...

  3. 二、PyTorch 入门实战—Variable(转)

    目录 一.概念 二.Variable的创建和使用 三.标量求导计算图 四.矩阵求导计算图 五.Variable放到GPU上执行 六.Variable转Numpy与Numpy转Variable 七.Va ...

  4. 通过OpenGL理解前端渲染原理(1)

    一.OpenGL OpenGL,是一套绘制3D图形的API,当然它也可以用来绘制2D的物体.OpenGL有一大套可以用来操作模型和图片的函数,通常编写OpenGL库的人是显卡的制造者.我们买的显卡都支 ...

  5. NLP(十三)中文分词工具的使用尝试

      本文将对三种中文分词工具进行使用尝试,这三种工具分别为哈工大的LTP,结巴分词以及北大的pkuseg.   首先我们先准备好环境,即需要安装三个模块:pyltp, jieba, pkuseg以及L ...

  6. 监控LVS

    监控LVS #!/usr/bin/python-2.6.6 #data 2017-10-17 #auth liuchao import commands,os,time #-------------- ...

  7. java8中使用函数式接口

    使用函数式接口 Predicate @FunctionalInterface interface Predicate<T>{ boolean test(T t); } public sta ...

  8. 如何阅读JDK源码

    JDK源码阅读笔记: https://github.com/kangjianwei/LearningJDK 如何阅读源码,是每个程序员需要面临的一项挑战. 为什么需要阅读源码?从实用性的角度来看,主要 ...

  9. JS和C#.NET获取客户端IP

    我们经常在项目中会遇到这种需要获取客户端真实IP的需求,其实在网上也能随便就能查到各种获取的方法,我也是在网上查了加上了自己的实践,说一下自己在实践后的感受,基本上网上大部分都是用JS的方法来获取客户 ...

  10. 利用hash或history实现单页面路由

    目录 html代码 css代码 JavaScript代码 hash方式 history 方式 浏览器端代码 服务器端 在chrome(版本 70.0.3538.110)测试正常 编写涉及:css, h ...