@

认识并查集

对于并查集(不相交集合),很多人会感到很陌生没听过或者不是特别了解。实际上并查集是一种挺高效的数据结构。实现简单,只是所有元素统一遵从一个规律所以让办事情的效率高效起来。

对于定意义,百科上这么定义的:

并查集,在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中。其特点是看似并不复杂,但数据量极大,若用正常的数据结构来描述的话,往往在空间上过大,计算机无法承受;即使在空间上勉强通过,运行的时间复杂度也极高,根本就不可能在比赛规定的运行时间(1~3秒)内计算出试题需要的结果,只能用并查集来描述。

并查集是一种树型的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。常常在使用中以森林来表示。

并查集解析

基本思想

  • 初始化,一个森林每个都为独立。通常用数组表示,每个值初始为-1。各自为根

  • join(a,b) 操作。a,b两个集合合并。注意这里的a,并不是a,b合并,而是a,b的集合合并。这就派生了一些情况:
  • a,b如果是独立的(没有和其他合并),那么直接a指向b(或者b指向a),即data[a]=b;同时为了表示这个集合有多少个,原本-1的b再次-1.即data[b]=-2.表示以b为父亲的节点有|-2|个。



  • a,b如果有集合(可能有父亲,可能自己是根),那么我们当然不能直接操作a,b(因为a,b可能已经指向别人了.)那么我们只能操作a,b的祖先。因为a,b的祖先是没有指向的(即数据为负值表示大小)。那么他们首先一个负值要加到另外一个上面去。另外这个数值要变成指向的那个表示联系。

对于上述你可能会有疑问:

如何查看a,b是否在一个集合?

  • 查看是否在一个集合,只需要查看节点根祖先的结果是否相同即可。因为只有根的数值是负的,而其他都是正数表示指向的元素。所以只需要一直寻找直到不为正数进行比较即可

a,b合并,究竟是a的祖先合并在b的祖先上,还是b的祖先合并在a上?

  • 这里会遇到两种情况,这个选择也是非常重要的。你要弄明白一点:树的高度+1的化那么整个元素查询的效率都会降低!

所以我们通常是:小数指向大树(或者低树指向高树),这个使得查询效率能够增加!



当然,在高度和数量的选择上,还需要你自己选择和考虑。

其他路径压缩?

每次查询,自下向上。当我们调用递归的时候,可以顺便压缩路径,因为我们查找一个元素其实只需要直到它的祖先,所以当他距离祖先近那么下次查询就很快。并且压缩路径的代价并不大!

代码实现

并查集实现起来较为简单,直接贴代码!

package 并查集不想交集合;

import java.util.Scanner;
public class DisjointSet {
static int tree[]=new int[100000];//假设有500个值
public DisjointSet() {set(this.tree);}
public DisjointSet(int tree[])
{
this.tree=tree;
set(this.tree);
}
public void set(int a[])//初始化所有都是-1 有两个好处,这样他们指向-1说明是自己,第二,-1代表当前森林有-(-1)个
{
int l=a.length;
for(int i=0;i<l;i++)
{
a[i]=-1;
}
}
public int search(int a)//返回头节点的数值
{
if(tree[a]>0)//说明是子节点
{
return tree[a]=search(tree[a]);//路径压缩
}
else
return a;
}
public int value(int a)//返回a所在树的大小(个数)
{
if(tree[a]>0)
{
return value(tree[a]);
}
else
return -tree[a];
}
public void union(int a,int b)//表示 a,b所在的树合并
{
int a1=search(a);//a根
int b1=search(b);//b根
if(a1==b1) {System.out.println(a+"和"+b+"已经在一棵树上");}
else {
if(tree[a1]<tree[b1])//这个是负数,为了简单减少计算,不在调用value函数
{
tree[a1]+=tree[b1];//个数相加 注意是负数相加
tree[b1]=a1; //b树成为a的子树,直接指向a;
}
else
{
tree[b1]+=tree[a1];//个数相加 注意是负数相加
tree[a1]=b1; //b树成为a的子树,直接指向a;
}
}
}
public static void main(String[] args)
{
DisjointSet d=new DisjointSet();
d.union(1,2);
d.union(3,4);
d.union(5,6);
d.union(1,6); d.union(22,24);
d.union(3,26);
d.union(36,24);
System.out.println(d.search(6)); //头
System.out.println(d.value(6)); //大小
System.out.println(d.search(22)); //头
System.out.println(d.value(22)); //大小
}
}

结语

  • 并查集属于简单但是很高效率的数据结构。在集合中经常会遇到。如果不采用并查集而传统暴力效率太低,而不被采纳。
  • 另外,并查集还广泛用于迷宫游戏中,下面有机会可以介绍用并查集实现一个走迷宫小游戏。大家欢迎关注!
  • 最后,欢迎大家关注笔者公众号,一起学习、交流!笔者学习资源也放置公众号和大家一起分享!

并查集(不相交集合)详解与java实现的更多相关文章

  1. poj1417 true liars(并查集 + DP)详解

    这个题做了两天了.首先用并查集分类是明白的, 不过判断是否情况唯一刚开始用的是搜索.总是超时. 后来看别人的结题报告, 才恍然大悟判断唯一得用DP. 题目大意: 一共有p1+p2个人,分成两组,一组p ...

  2. Java集合详解1:一文读懂ArrayList,Vector与Stack使用方法和实现原理

    本文非常详尽地介绍了Java中的三个集合类 ArrayList,Vector与Stack <Java集合详解系列>是我在完成夯实Java基础篇的系列博客后准备开始写的新系列. 这些文章将整 ...

  3. Solr系列二:solr-部署详解(solr两种部署模式介绍、独立服务器模式详解、SolrCloud分布式集群模式详解)

    一.solr两种部署模式介绍 Standalone Server 独立服务器模式:适用于数据规模不大的场景 SolrCloud  分布式集群模式:适用于数据规模大,高可靠.高可用.高并发的场景 二.独 ...

  4. Java集合详解6:TreeMap和红黑树

    Java集合详解6:TreeMap和红黑树 初识TreeMap 之前的文章讲解了两种Map,分别是HashMap与LinkedHashMap,它们保证了以O(1)的时间复杂度进行增.删.改.查,从存储 ...

  5. Java集合详解8:Java集合类细节精讲,细节决定成败

    <Java集合详解系列>是我在完成夯实Java基础篇的系列博客后准备开始写的新系列. 这些文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到我的仓库里查 ...

  6. Java集合详解7:一文搞清楚HashSet,TreeSet与LinkedHashSet的异同

    <Java集合详解系列>是我在完成夯实Java基础篇的系列博客后准备开始写的新系列. 这些文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到我的仓库里查 ...

  7. Java集合详解6:这次,从头到尾带你解读Java中的红黑树

    <Java集合详解系列>是我在完成夯实Java基础篇的系列博客后准备开始写的新系列. 这些文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到我的仓库里查 ...

  8. Java集合详解4:一文读懂HashMap和HashTable的区别以及常见面试题

    <Java集合详解系列>是我在完成夯实Java基础篇的系列博客后准备开始写的新系列. 这些文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到我的仓库里查 ...

  9. Java集合详解3:一文读懂Iterator,fail-fast机制与比较器

    <Java集合详解系列>是我在完成夯实Java基础篇的系列博客后准备开始写的新系列. 这些文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到我的仓库里查 ...

随机推荐

  1. Spring Boot 中 Redis 的使用

    Spring Boot 对常用的数据库支持外,对 Nosql 数据库也进行了封装自动化,如Redis.MongoDB等,本文主要介绍Redis的使用. Redis 介绍 Redis 是目前业界使用最广 ...

  2. C语言入门3-C语言概述及数据类型

    一.          计算机程序设计语言 (计算机语言的发展历史) 1.       机器语言 机器语言 二进制代码语言,由  0和1组成的. 特点是:计算机可以直接识别,不需要进行任何的翻译. 2 ...

  3. C#7.0 新增功能

    连载目录    [已更新最新开发文章,点击查看详细] C# 7.0 向 C# 语言添加了许多新功能 01 out 变量 支持 out 参数的现有语法已在此版本中得到改进. 现在可以在方法调用的参数列表 ...

  4. websocket的加密和解密过程

    加密: import struct msg_bytes = "the emperor has not been half-baked in the early days of the col ...

  5. linux下的FTP安装及调优

    前言: 在之前交换平台的开发中,FTP的各种操作算是核心功能点. 在FTP的开发中,遇到了不少坑. 如FTP需要设置被动模式,否则10M以上的包可能会上传失败. 如FTP需要设置囚牢模式,否则访问的文 ...

  6. Flutter学习笔记(11)--文本组件、图标及按钮组件

    如需转载,请注明出处:Flutter学习笔记(10)--容器组件.图片组件 文本组件 文本组件(text)负责显示文本和定义显示样式,下表为text常见属性 Text组件属性及描述 属性名 类型 默认 ...

  7. swift对象存储

    swift对象存储 简介 OpenStack Object Storage(Swift)是OpenStack开源云计算项目的子项目之一,被称为对象存储,提供了强大的扩展性.冗余和持久性.对象存储,用于 ...

  8. Apache Ignite 学习笔记(6): Ignite中Entry Processor使用

    之前的文章我们其实已经用到了两种不同的方式访问Ignite中的数据.一种方式是第一篇文章中提到通过JDBC客户端用SQL访问数据,在这篇文章中我们也会看到不使用JDBC,如何通过Ignite API用 ...

  9. TCP queue 的一些问题

    转自Jasey Wang的blog,原文地址 首先回顾下三次握手里面涉及到的问题: 当 client 通过 connect 向 server 发出 SYN 包时,client 会维护一个 socket ...

  10. jdk1.8源码解析:HashMap底层数据结构之链表转红黑树的具体时机

    本文从三个部分去探究HashMap的链表转红黑树的具体时机: 一.从HashMap中有关“链表转红黑树”阈值的声明: 二.[重点]解析HashMap.put(K key, V value)的源码: 三 ...