1.介绍

BloomFilter(布隆过滤器)是一种可以高效地判断元素是否在某个集合中的算法。

在很多日常场景中,都大量存在着布隆过滤器的应用。例如:检查单词是否拼写正确、网络爬虫的URL去重、黑名单检验,微博中昵称不能重复的检测。在工业界中,Google著名的分布式数据库BigTable也用

了布隆过滤器来查找不存在的行或列,以减少磁盘查找的IO次数;Google Chrome浏览器使用BloomFilter来判断一个网站是否为恶意网站。

对于以上场景,可能很多人会说,用HashSet甚至简单的链表、数组做存储,然后判断是否存在不就可以了吗?

当然,对于少量数据来说,HashSet是很好的选择。但是对于海量数据来说,BloomFilter相比于其他数据结构在空间效率和时间效率方面都有着明显的优势。

但是,布隆过滤器具有一定的误判率,有可能会将本不存在的元素判定为存在。因此,对于那些需要“零错误”的应用场景,布隆过滤器将不太适用。具体的原因将会在第二部分中介绍。

在本文的第二部分,本文将会介绍BloomFilter的基本算法思想;第三部分将会基于Google开源库Guava来讲解BloomFilter的具体实现;在第四部分中,将会介绍一些开源的BloomFilter的扩展,以解决目前BloomFilter的不足。

2.算法讲述

布隆过滤器是基于Hash来实现的,在学习BloomFilter之前,也需要对Hash的原理有基本的了解。个人认为,BloomFilter的总体思想实际上和bitmap很像,但是比bitmap更节省空间,误判率也更低。

BloomFilter的整体思想并不复杂,主要是使用k个Hash函数将元素映射到位向量的k个位置上面,并将这k个位置全部置为1。当查找某元素是否存在时,查找该元素所对应的k位是否全部为1即可说明该元素是否存在。

2.1算法流程

BloomFilter的整体算法流程可总结为如下步骤:

  1. BloomFilter初始化为m位长度的位向量,每一位均初始化为0
  2. 使用k个相互独立的Hash函数,每个Hash函数将元素映射到{1..m}的范围内,并将对应的位置为1。

    如上图所示,元素x分别被三个Hash函数映射到了三个位置8、1、14,并将这三个位置从0变为1。
  3. 若检查一个元素y是否存在,首先第一步使用k个Hash函数将元素y映射到k位。分别检测每一位是否为0。若某一位为0,则元素y一定不存在,若全部为1,则有可能存在。

2.2空间复杂度

BloomFilter 使用位向量来表示元素,而不存储本身,这样极大压缩了元素的存储空间。其空间复杂度为O(m),m是位向量的长度。而m与插入总数量n的关系如公式

我们可以利用这个公式来算一下需要抓取100万个URL时BloomFilter所占据的空间。

假设要求误判率为1%,因此该公式可转化为m=9.6∗n。故此时BloomFilter位向量的大小为100w∗9.6=960wbit,约1.1M内存空间。

只需要1.1M的内存空间,就可满足100万个url的去重需求,这个空间复杂度之低不可谓不惊人。

实际上,哪怕是1亿个URL,也仅需100M左右的内存空间即可满足BloomFilter的空间需求,这对于绝大部分爬虫的体量来说,是完全可行的。

1MB ≈ 10^3KB ≈ 10^6Byte  ≈ 8 * 10^6b = 800Wbit

2.3时间复杂度

时间复杂度方面 BloomFilter的时间复杂度仅与Hash函数的个数k有关,即O(k)

2.4缺点

删除元素

BloomFilter 由于并不存储元素,而是用位的01来表示元素是否存在,并且很有可能一个位时被多个元素同时使用。所以无法通过将某元素对应的位置为0来删除元素。

幸运的是,目前学术界和工业界都有很多方法扩展已解决以上问题。

强烈建议读取下面两篇文章,并且把其中的公式推导一遍:

转载大部分来自:http://cyhone.com/2017/02/07/Introduce-to-BloomFilter/

同时推荐:http://llimllib.github.io/bloomfilter-tutorial/zh_CN/

解读BloomFilter算法(转载)的更多相关文章

  1. 基于Redis的BloomFilter算法去重

    BloomFilter算法及其适用场景 BloomFilter是利用类似位图或者位集合数据结构来存储数据,利用位数组来简洁的表示一个集合,并且能够快速的判断一个元素是不是已经存在于这个集合.因为基于H ...

  2. BloomFilter算法

    Bloom filter 是由 Howard Bloom 在 1970 年提出的二进制向量数据结构,它具有很好的空间和时间效率,被用来检测一个元素是不是集合中的一个成员.如果检测结果为是,该元素不一定 ...

  3. A* 寻路算法[转载]

    A* 寻路算法 转载地址:http://www.cppblog.com/christanxw/archive/2006/04/07/5126.html 原文地址: http://www.gamedev ...

  4. GJM : 数据结构 - 轻松看懂机器学习十大常用算法 [转载]

     转载请联系原文作者 需要获得授权,非法转载 原文作者将享受侵权诉讼 文/不会停的蜗牛(简书作者)原文链接:http://www.jianshu.com/p/55a67c12d3e9 通过本篇文章可以 ...

  5. 深度解读 AlphaGo 算法原理

    http://blog.csdn.net/songrotek/article/details/51065143 http://blog.csdn.net/dinosoft/article/detail ...

  6. 数据结构图之三(最短路径--迪杰斯特拉算法——转载自i=i++

    数据结构图之三(最短路径--迪杰斯特拉算法)   [1]最短路径 最短路径?别乱想哈,其实就是字面意思,一个带边值的图中从某一个顶点到另外一个顶点的最短路径. 官方定义:对于内网图而言,最短路径是指两 ...

  7. 海量数据处理之布隆过滤器BloomFilter算法

    Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法.通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求100%正确的场合.使用场景:数据量为100亿 ...

  8. AStar算法(转载)

    以下的文章来至http://blog.csdn.net/debugconsole/article/details/8165530,感激这位博主的翻译,可惜图片被和谐了,所以为方便阅读,我重新把图片贴上 ...

  9. 浅谈MySQL索引背后的数据结构及算法(转载)

    转自:http://blogread.cn/it/article/4088?f=wb1 摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储 ...

随机推荐

  1. Leetcode solution 291: Word Pattern II

    Problem Statement Given a pattern and a string str, find if str follows the same pattern. Here follo ...

  2. Python基础总结之第三天开始重新认识‘字符串’(新手可相互督促)

    年薪20万的梦想,又进了一步... 戏好多 ’字符串‘开始啦~ 字符串的定义:字符串可以用英文单引号或双引号又或者三引号包围起来. 为毛有单引号,还要有双引号和三引号??? 看案例吧: 字符串的其他使 ...

  3. Golang高效实践之泛谈篇

    前言 我博客之前的Golang高效实践系列博客中已经系统的介绍了Golang的一些高效实践建议,例如: <Golang高效实践之interface.reflection.json实践>&l ...

  4. Spring Boot中自定义注解+AOP实现主备库切换

    摘要: 本篇文章的场景是做调度中心和监控中心时的需求,后端使用TDDL实现分表分库,需求:实现关键业务的查询监控,当用Mybatis查询数据时需要从主库切换到备库或者直接连到备库上查询,从而减小主库的 ...

  5. Something wrong with EnCase v8 index search results

    My friend told me that she installed EnCase v8.05 on her workstation which OS version is Win 10. She ...

  6. 我与微笑哥以及 Java 极客技术的前世今生

    ​关注公众号,大家可以在公众号后台回复“博客园”,免费获得作者 Java 知识体系/面试必看资料. Hello,大家好,我是子悠,Java 极客技术团队的作者之一,本周是六月的第三周,将由我给大家编辑 ...

  7. JVM(二):画骨

    ### 概述 我们首先来认识一下`JVM`的运行时数据区域,如果说`JVM`是一个人,那么运行时数据区域就是这个人的骨架,它支撑着JVM的运行,所以我们先来学习一下运行时数据区域的分类和简单介绍. # ...

  8. Java——win10配置环境变量

    一.安装JDK 1.下载jdk                                           地址:https://pan.baidu.com/s/1P9CZZoZ0AzZU0c ...

  9. 佳木斯集训Day4

    Day4的出题人好毒瘤啊!!! T1我打表过的,正解现在也不会 #include <bits/stdc++.h> #define MAXN 10050 #define ll long lo ...

  10. Golang高效实践之array、slice、map

    前言 Golang的slice类型为连续同类型数据提供了一个方便并且高效的实现方式.slice的实现是基于array,slice和map一样是类似于指针语义,传递slice和map并不涉及底层数据结构 ...