sleuth和zipkin微服务里的链路跟踪
分布式链路跟踪介绍
对于一个微服务系统,大多数来自外部的请求都会经过数个服务的互相调用,得到返回的结果,一旦结果回复较慢或者返回了不可用,我们就需要确定是哪个微服务出了问题。于是就有了分布式系统调用跟踪的诞生。
现今业界分布式服务跟踪的理论基础主要来自于 Google 的一篇论文《Dapper, a Large-Scale Distributed Systems Tracing Infrastructure》,使用最为广泛的开源实现是 Twitter 的 Zipkin,为了实现平台无关、厂商无关的分布式服务跟踪,CNCF 发布了布式服务跟踪标准 Open Tracing。国内,淘宝的“鹰眼”、京东的“Hydra”、大众点评的“CAT”、新浪的“Watchman”、唯品会的“Microscope”、窝窝网的“Tracing”都是这样的系统。
Spring Cloud Sleuth 介绍
一般的,一个分布式服务跟踪系统,主要有三部分:数据收集、数据存储和数据展示。根据系统大小不同,每一部分的结构又有一定变化。譬如,对于大规模分布式系统,数据存储可分为实时数据和全量数据两部分,实时数据用于故障排查(troubleshooting),全量数据用于系统优化;数据收集除了支持平台无关和开发语言无关系统的数据收集,还包括异步数据收集(需要跟踪队列中的消息,保证调用的连贯性),以及确保更小的侵入性;数据展示又涉及到数据挖掘和分析。虽然每一部分都可能变得很复杂,但基本原理都类似。
功能
Spring Cloud Sleuth为服务之间调用提供链路追踪。Sleuth可以帮助我们:
- 耗时分析: 通过Sleuth可以很方便的了解到每个采样请求的耗时,从而分析出哪些服务调用比较耗时;
- 可视化错误: 对于程序未捕捉的异常,可以通过集成Zipkin服务界面上看到;
- 链路优化: 对于调用比较频繁的服务,可以针对这些服务实施一些优化措施。
Spring Cloud Sleuth的组成
trace:从客户发起请求(request)抵达被追踪系统的边界开始,到被追踪系统向客户返回响应(response)为止的过程.包含一系列的span,它们组成了一个树型结构
span: 每个 trace中会调用若干个服务,为了记录调用了哪些服务,以及每次调用的消耗时间等信息,在每次调用服务时,埋入一个调用记录,称为一个“span”。Span是基本的工作单元。Span包括一个64位的唯一ID,一个64位trace码,描述信息,时间戳事件,key-value 注解(tags),span处理者的ID(通常为IP)。
最开始的初始Span称为根span,此span中span id和 trace id值相同。Annotation: 用于及时记录存在的事件。常用的Annotation如下
- cs - Client Sent:客户端发送一个请求,表示span的开始
- sr - Server Received:服务端接收请求并开始处理它。(sr-cs)等于网络的延迟
- ss - Server Sent:服务端处理请求完成,开始返回结束给服务端。(ss-sr)表示服务端处理请求的时间
- cr - Client Received:客户端完成接受返回结果,此时span结束。(cr-sr)表示客户端接收服务端数据的时间
ZipKin介绍
spring cloud sleuth可以结合zipkin,将信息发送到zipkin,利用zipkin的存储来存储信息,利用zipkin ui来展示数据。
Zipkin 是一个开放源代码分布式的跟踪系统,由Twitter公司开源,它致力于收集服务的定时数据,以解决微服务架构中的延迟问题,包括数据的收集、存储、查找和展现。
每个服务向zipkin报告计时数据,zipkin会根据调用关系通过Zipkin UI生成依赖关系图,显示了多少跟踪请求通过每个服务,该系统让开发者可通过一个 Web 前端轻松的收集和分析数据,例如用户每次请求服务的处理时间等,可方便的监测系统中存在的瓶颈。
Zipkin提供了可插拔数据存储方式:In-Memory、MySql、Cassandra以及Elasticsearch。接下来的测试为方便直接采用In-Memory方式进行存储,生产推荐Elasticsearch。
spring cloud sleuth结合zipkin
在使用 Spring Boot 2.x 版本后,官方就不推荐自行定制编译了,让我们直接使用编译好的 jar 包.也就是说原来通过@EnableZipkinServer或@EnableZipkinStreamServer的路子,启动SpringBootApplication自建Zipkin Server是不行了
安装和部署zipkin
官方提供了一键脚本
curl -sSL https://zipkin.io/quickstart.sh | bash -s
java -jar zipkin.jar
如果用 Docker 的话,直接
docker run -d -p 9411:9411 openzipkin/zipkin
访问 http://localhost:9411/zipkin/
添加zipkin的支持
<!--分布式链路追踪-->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-sleuth</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-zipkin</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-webflux</artifactId>
</dependency>
配置文件
spring:
sleuth:
web:
client:
enabled: true
sampler:
probability: 1.0 # 将采样比例设置为 1.0,也就是全部都需要。默认是 0.1
zipkin:
base-url: http://localhost:9411/ # 指定了 Zipkin 服务器的地址
sleuth和zipkin微服务里的链路跟踪的更多相关文章
- spring cloud 入门系列八:使用spring cloud sleuth整合zipkin进行服务链路追踪
好久没有写博客了,主要是最近有些忙,今天忙里偷闲来一篇. =======我是华丽的分割线========== 微服务架构是一种分布式架构,微服务系统按照业务划分服务单元,一个微服务往往会有很多个服务单 ...
- Zipkin — 微服务链路跟踪.
一.Zipkin 介绍 Zipkin 是什么? Zipkin的官方介绍:https://zipkin.apache.org/ Zipkin是一款开源的分布式实时数据追踪系统(Distributed ...
- Spring Cloud 微服务架构全链路实践
阅读目录: 1. 网关请求流程 2. Eureka 服务治理 3. Config 配置中心 4. Hystrix 监控 5. 服务调用链路 6. ELK 日志链路 7. 统一格式返回 Java 微服务 ...
- zipkin微服务调用链分析
1.zipkin的作用 在微服务架构下,一个http请求从发出到响应,中间可能经过了N多服务的调用,或者N多逻辑操作, 如何监控某个服务,或者某个逻辑操作的执行情况,对分析耗时操作,性能瓶颈具有很大价 ...
- zipkin微服务调用链分析(python)
一,概述 zipkin的作用 在微服务架构下,一个http请求从发出到响应,中间可能经过了N多服务的调用,或者N多逻辑操作,如何监控某个服务,或者某个逻辑操作的执行情况,对分析耗时操作,性能瓶颈具有很 ...
- 微服务-技术专区-链路追踪(pinpoint)-部署使用
https://naver.github.io/pinpoint/ https://github.com/naver/pinpoint 背景 随着项目微服务的进行,微服务数量逐渐增加,服务间的调用也越 ...
- 微服务架构-选择Spring Cloud,放弃Dubbo
Spring Cloud 在国内中小型公司能用起来吗?从 2016 年初一直到现在,我们在这条路上已经走了一年多. 在使用 Spring Cloud 之前,我们对微服务实践是没有太多的体会和经验的.从 ...
- 放弃Dubbo,选择最流行的Spring Cloud微服务架构实践与经验总结
http://developer.51cto.com/art/201710/554633.htm Spring Cloud 在国内中小型公司能用起来吗?从 2016 年初一直到现在,我们在这条路上已经 ...
- Spring Cloud 微服务的那点事
什么是微服务 微服务的概念源于2014年3月Martin Fowler所写的一篇文章“Microservices”. 微服务架构是一种架构模式,它提倡将单一应用程序划分成一组小的服务,服务之间互相协调 ...
随机推荐
- js表达式和语句趣味题讲解与技术分享
技术分享 问题1 { a: 1 } + 1 // ? ({ a: 1 }) + 1 // ? 1 + { a: 1 } // ? 答案 { a: 1 } + 1 // 1 ({ a: 1 }) + 1 ...
- bash中$符号的一般用法
$一般用于获取变量的内容(字符串或数字等),用以构成命令version=$(uname -r).构成字符串echo "my name is $myname".进行算术运算等tota ...
- Kubernetes v1.17 版本解读 | 云原生生态周报 Vol. 31
作者 | 徐迪.李传云.黄珂.汪萌海.张晓宇.何淋波 .陈有坤.李鹏审核 | 陈俊 上游重要进展 1. Kubernetes v1.17 版本发布 功能稳定性是第一要务.v1.17 包含 22 个增强 ...
- AtCoder-3920
We have a 3×3 grid. A number ci,j is written in the square (i,j), where (i,j) denotes the square at ...
- CSU-2018
The gaming company Sandstorm is developing an online two player game. You have been asked to impleme ...
- 分布式监控告警平台Centreon快速使用
一. Centreon概述 Centreon是一款功能强大的分布式IT监控系统,它通过第三方组件可以实现对网络.操作系统和应用程序的监控:首先,它是开源的,我们可以免费使用它:其次,它的底层采用nag ...
- VMware“该虚拟机似乎正在使用中”
问题现象: 在用VMware虚拟机的时候,有时会发现打开虚拟机时提示"该虚拟机似乎正在使用中.如果该虚拟机未在使用,请按"获取所有权(T)"按钮获取它的所有权.否则,请按 ...
- 改进一条Group By
1.先回顾下基础知识: Group By 对数据分组聚合,常常伴随having使用.having可以处理单记录,也可以小组为单位处理. 语句: SELECT colFROM table[WHERE][ ...
- 【Java笔试】对数据库中的分解是否为无损连接和是否保持函数依赖的判定-由牛客网试题引申-保姆式教学
[牛客网数据库原理题目]设关系模式R(A,B,C),F是R上成立的FD集,F={A→B,C→B},ρ={AB,AC}是R的一个分解,那么分解ρ()? 正确答案:C你的答案:A(错误) ( A ) 保持 ...
- Go 面试每天一篇(第 65 天)
Go 面试每天一篇(第 65 天) 1.下面列举的是 recover() 的几种调用方式,哪些是正确的? A. 1func main() { 2 recover() 3 panic(1) 4} B. ...