栈和队列的应用非常多,但其起实现嘛,其实很少人关心。

虽然苹果一直宣传什么最小年龄的编程者,它试图把编程大众化,弱智化,但真正的复杂问题,需要抽丝剥茧的时候,还是要 PRO 人士出场,所以知根知底,实在是必要之举(而非无奈之举)。

大门敞开,越往里走越窄,竞争会越激烈。

基本特性

就一条,FILO。但是用在其他复杂数据结构,比如树,或者用在其他应用场景的时候,比如记录调用过程中的变量及其状态等,超有用。

应用举例

比如 撤销操作:

用户每次的录入都会入栈,被系统记录,然后写入文件;但是用户撤销,则是当前的操作出栈,此时上一次操作位于栈顶,也就相当于本次操作被取消了。

这里始终 操作栈顶 即可。

比如 程序调用栈:

函数一调用就会入栈(因为这个函数可能内部还要调用别的函数),函数调用返回时,出栈。

每次返回时不知道下一步执行谁?不会的,它会参考栈里面记录的调用链。

比如 括号匹配 问题:

遇到左括号(只要是左边括号)就入栈,碰到右边括号就比较,如果匹配,那么就出栈。(不匹配直接返回false)

(抱歉,Python代码写多了,老是忘记加上 ; 分号)

顺序栈实现

定义好接口,然后内部封装一个动态数组,实现接口的方法即可。

大概的接口,通用的方法就五个:

public interface Stack<E> {
//接口中声明相关方法即可
boolean isEmpty();
int getSize(); E pop();
E peek();
void push(E e);
}

然后实现代码如下:


// 真正的实现
import array.AdvanceDynamicArray; public class ArrayStack<E> implements Stack<E> {
//底层实现是动态数组,所以内部直接引用动态数组就好了
AdvanceDynamicArray<E> array; public ArrayStack(int capacity) {
array = new AdvanceDynamicArray<>(capacity);
} public ArrayStack() {
array = new AdvanceDynamicArray<>();
} @Override
public boolean isEmpty() {
return array.isEmpty();
} @Override
public int getSize() {
return array.getSize();
} @Override
public E pop() {
return array.pop();
} @Override
public E peek() {
return array.getLast();
} @Override
public void push(E e) {
array.append(e);
} @Override
public String toString() {
StringBuilder res = new StringBuilder();
res.append("Stack [");
for (int i = 0; i < array.getSize(); i++) {
res.append(array.get(i));
if (i != array.getSize() - 1) {
res.append(", ");
}
}
res.append("],top right");
return res.toString();
}
}

没事儿简单测试一下看看:

//测试一下栈
private static void test_stack_1() {
ArrayStack<Integer> stack = new ArrayStack<>(); //默认内部动态数组容量 10
//推入 5 个元素
for(int i=0; i< 5; i++){
stack.push(i);
System.out.println(stack); //每次入栈,打印一次
}
System.out.println("---------");
stack.pop();
System.out.println(stack);
} // 打印输入结果如下:
Stack [0],top right
Stack [0, 1],top right
Stack [0, 1, 2],top right
Stack [0, 1, 2, 3],top right
Stack [0, 1, 2, 3, 4],top right
---------
Stack [0, 1, 2, 3],top right

复杂度分析

基本都在末尾操作,所以基本都是 O(1)。

(push 和 pop 由于涉及到扩容和缩容,所以上面的 O(1) 其实是均摊的)

普通队列

同样是一个操作受限的容器

基本特性

感觉就一条 FILO 。

应用举例

我接触的用到的队列,要么是支持并发操作的并发队列,由于加锁,所以并发性并不是很好。

另外一种就是异步任务队列,即把工作加入队列,由外部 IO 接口读取(可能是多个线程,也可能是多路复用的读)

哦,个人在广度优先遍历时用过。(需要统计相关目录及其子目录的各种各样语言的代码量,此时把子目录加入到队列尾部,然后不断出队检查当前目录的文件)

顺序队列实现

  • 定义好接口,底层实现用 动态数组 完成接口中的方法
  • 入队 enqueue,出队 dequeue 为核心 (不必担心满和空,因为一个在数组尾部操作,一个在数组头部操作,空间够不够底层数组负责)

接口及其实现 如下:

//接口
public interface Queue<E> {
boolean isEmpty();
int getSize(); E dequeue();
E getFront(); void enqueue(E e);
} public class ArrayQueue<E> implements Queue<E> { private AdvanceDynamicArray<E> array; public ArrayQueue(int capacity) {
array = new AdvanceDynamicArray<>(capacity);
} public ArrayQueue() {
array = new AdvanceDynamicArray<>();
} @Override
public boolean isEmpty() {
return array.isEmpty();
} @Override
public int getSize() {
return array.getSize();
} @Override
public E dequeue() {
return array.popLeft();
} @Override
public E getFront() {
return array.getFirst();
} @Override
public void enqueue(E e) {
array.append(e);
} @Override
public String toString() {
StringBuilder res = new StringBuilder();
res.append("Queue: [");
for(int i = 0; i< array.getSize(); i++) {
res.append(array.get(i));
if(i != array.getSize() - 1) {
res.append(", ");
}
}
res.append("],tail");
return res.toString();
} //测试看看
public static void main(String[] args) {
ArrayQueue<Integer> queue = new ArrayQueue<>();
//放入元素
for(int i = 0; i< 10; i++) {
queue.enqueue(i);
System.out.println(queue); //放入一个元素,查看一次队列
} //出栈试试
System.out.println("--------");
queue.dequeue();
System.out.println(queue);
}
}

输出结果:

Queue: [0],tail
Queue: [0, 1],tail
Queue: [0, 1, 2],tail
Queue: [0, 1, 2, 3],tail
Queue: [0, 1, 2, 3, 4],tail
Queue: [0, 1, 2, 3, 4, 5],tail
Queue: [0, 1, 2, 3, 4, 5, 6],tail
Queue: [0, 1, 2, 3, 4, 5, 6, 7],tail
Queue: [0, 1, 2, 3, 4, 5, 6, 7, 8],tail
Queue: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],tail
--------
Queue: [1, 2, 3, 4, 5, 6, 7, 8, 9],tail

复杂度分析

其实就是出队的时候,从头部出,涉及到移动(覆盖元素),所以为 O(n)

其他操作都只在尾部进行,所以都是 O(1),其中尾部 enqueue 是均摊。总体来说,这个出队的消耗时间太大了。如果要 底层实现不变,可以实现其他队列,减少移动次数

循环队列

循环队列是如何减少移动操作?

出队一定要移动元素么? 如果只移动记录队首的标记,这样会不好好一点?

  • 尝试移动标记队首、队尾的标志(索引)

循环队列有一个非常重要的点,区分队列满、队列空的条件:

  • 队列满 (tail+1)%capacity == front
  • 队列空 tail == front

人为的浪费一个空间,不存元素,和队列空条件区分开。(否则队列满和空都能用 tail == front 来判断,无法区分)

基本原理

其实也就是相对于普通队列而言,支持其优化的理由在哪里。

首先老规矩,front 肯定指向的是第一个元素,tail 肯定执行的是最后一个元素的后一个位置,大致如下图:

也即是说,还是基于顺序存储的结构,新增两个变量记录队首和队尾的索引。

然后看一下 tail 和 front 都是怎么变? 一句话总结:

  • 添加元素 tail++ ((tail+1)%capacity)
  • 删除元素 front++ ((front+1)%capacity)

在队列中移动索引,front 或者 tail, 都要取模,以免越界。

细说,初始状态,没有元素,两者都指向索引为 0 的位置,然后添加元素 tail++,不断添加不断++;当且仅在队首出元素的时候,front++。

此时出队就不需要移动元素覆盖前面的了,直接移动索引 front 即可。然后就出现这样的状况:

发现前面有可用的空间,然后也还会出现这样的状态:

然后再往里面扔一个元素试试,结果就循环了:

那再放一个呢?队列满了。

(因为前面说过认为的空出一个空间,让队列满和队列空区分开来)

这里的扩容怎么设计?需要修改底层动态数组么?

原始的动态数组方式,即使它扩容,也无法改变 front 和 tail 关系,所以不适用。

(且扩容拷贝的时候,也要考虑偏移,即取模问题)

具体实现

先把基于 Queue 接口把框架写出来,然后填补 enqueue 和 dequeue 方法。

public class LoopQueue<E> implements Queue<E> {
//内部自己维护一个数组
private E[] data;
private int front, tail; //front 指向头,tail 指向队尾的下一个元素
private int size; //其实可以用通过 front, tail 实现,但复杂,容易出错 public LoopQueue(int capacity){
data = (E[]) new Object[capacity+1]; //因为要故意浪费一个空间
front = tail = 0;
size = 0;
} public LoopQueue(){
data = (E[]) new Object[10+1]; //因为要故意浪费一个空间,默认存储10个元素
front = tail = 0;
size = 0;
} //外部能感知的实际能存储的 capacity
public int getCapacity() {
return data.length -1; //注意是 data.length 少一个
} //快捷方法,判断队列满 -- 用户不用关心,client始终可以放入 (因为会动态扩容)
private boolean isFull() {
//return (tail+1)%getCapacity() == front;
return (tail+1)%data.length == front; //判断队列满,用实际的 data.length 判断
} @Override
public boolean isEmpty() {
//return size == 0;
return front == tail; //特别注意队列为空的条件
} @Override
public int getSize() {
return size; //专门有一个变量维护
} @Override
public E getFront() {
//但凡要取元素,都要看看是否为空
if(isEmpty()){
throw new IllegalArgumentException("队列为空,不能出队");
}
return data[front];
} @Override
public String toString() {
StringBuilder res = new StringBuilder();
res.append(String.format("Queue: size=%d, capacity=%d\n", size, getCapacity())); res.append("front [");
/*
for (int i = 0; i < size; i++) {
res.append(data[i]);
if (i != size - 1) {
res.append(", ");
}
} */
//相对于 front 偏移的方式也是可以的 data[(i+front)%data.length]
for (int i = front; i != tail; i = (i+1)%data.length) {
res.append(data[i]);
if ((i+1)%data.length != tail) { //不是最后一个元素之前的一个元素
res.append(", ");
}
}
res.append("] tail");
return res.toString();
} // ---------------------- TODO
@Override
public E dequeue() {
//TODO
return null;
} @Override
public void enqueue(E e) {
//TODO }
}

上面的遍历方式也可以用取模偏移来写。

然后实现遗留下来的两个 TODO:

入队,先看队列是否为满。

  • 如果满,则重新分配空间,此时新空间自然应该从 0 开始放元素:
    @Override
public void enqueue(E e) {
//添加之前,先要看看队列是否是满的
if (isFull()) {
//抛出异常 or 动态扩容(包括移动元素)
resize(2 * getCapacity()); //当前实际占用空间*2
} //入队列
//data[tail++] = e; // tail++ 可能超过了 data.length
data[tail] = e;
tail = (tail + 1) % data.length;
size++;
} private void resize(int newCapacity) {
//改变容量,然后移动元素,重置索引
E[] newData = (E[]) new Object[newCapacity + 1]; //复制: 把旧的元素,放入新的数组
//新数组的索引是从 0 -> size 的
for (int i = 0; i < size; i++) {
//newData[i] = data[?];
newData[i] = data[(front + i) % data.length]; //索引移动,用的是data.length 判断
} //重置索引
front = 0;
tail = size; //实际个数是不变的
data = newData; //data.length 变化了,所以 getCapacity() 自然也变了
}

出队 操作,先看队列是否为空:

  • 如果为空,不返回或者抛出异常
    @Override
public E dequeue() {
//先看看是否为空
if(isEmpty()){
throw new IllegalArgumentException("队列为空,不能出队");
} E ret = data[front];
//最好还是把 data[front] 处理一下
data[front] = null;
front = (front+1)%data.length;
size--;
// 是否需要缩减容量 return ret;
}

其实还没有完,如果一直出列,size 比 data.length 小太多,则有必要缩减容量。

即在出队 dequeue 的代码中有必要添加 是否需要缩减容量 这一段:

    @Override
public E dequeue() {
//先看看是否为空
if(isEmpty()){
throw new IllegalArgumentException("队列为空,不能出队");
} E ret = data[front];
//最好还是把 data[front] 处理一下
data[front] = null;
front = (front+1)%data.length;
size--; //缩减容量(lazy 缩减),当实际存储为 1/4 capacity时,capacity缩减为一半
if(size == getCapacity()/4 && getCapacity()/2 != 0) {
resize(getCapacity()/2); //缩减后的容量不能为0
} return ret;
}

测试看看:

    public static void main(String[] args) {
LoopQueue<Integer> queue = new LoopQueue<>(); //默认实际存储 10 个元素
//存储 11 个元素看看
for(int i=0; i<11; i++){
queue.enqueue(i);
System.out.println(queue); // 在 10 个元素满的时候回扩容
}
//出队试试
System.out.println("------");
queue.dequeue();
System.out.println(queue);
//出队到只剩 5 个元素,即 20/4 时,缩减容量
queue.dequeue();
queue.dequeue();
queue.dequeue();
queue.dequeue();
queue.dequeue();
// 6, 7, 8, 9 10
System.out.println(queue); //此时容量变为 10 了
}

运行结果:

Queue: size=1, capacity=10
front [0] tail
Queue: size=2, capacity=10
front [0, 1] tail
Queue: size=3, capacity=10
front [0, 1, 2] tail
Queue: size=4, capacity=10
front [0, 1, 2, 3] tail
Queue: size=5, capacity=10
front [0, 1, 2, 3, 4] tail
Queue: size=6, capacity=10
front [0, 1, 2, 3, 4, 5] tail
Queue: size=7, capacity=10
front [0, 1, 2, 3, 4, 5, 6] tail
Queue: size=8, capacity=10
front [0, 1, 2, 3, 4, 5, 6, 7] tail
Queue: size=9, capacity=10
front [0, 1, 2, 3, 4, 5, 6, 7, 8] tail
Queue: size=10, capacity=10
front [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] tail
Queue: size=11, capacity=20
front [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] tail
------
Queue: size=10, capacity=20
front [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] tail
Queue: size=5, capacity=10
front [6, 7, 8, 9, 10] tail

实现总结

  • 开辟内部数组时,data.length 始终要比指定的 capacity 多一个

    • 即便是 resize,也是 new Object[newCapacity + 1]
  • 队列空 front == tail,队列满 (tail+1)%capacity == tail
  • 满、空的判断都要放在前面(enqueue, dequeue)
  • 索引的移动都要取模,包括 tail 和 front

此时,出队的复杂度也变为 O(1) 了(因为根本没有移动元素)。

复杂度分析

还分析啥?因为普通队列 dequeue 时要移动元素,O(n),所以这里才会拉扯一个循环队列。

所以除了 dequeue 是均摊的 O(1) 以及 enqueue 均摊O(1),其他操作都是 O(1)。


(链式存储的部分,后续再补充进来)

如果有不正确的地方,欢迎批评指正。

以防万一,我这里还是把相关代码上传到 gayhub 上了。

纯数据结构Java实现(2/11)(栈与队列)的更多相关文章

  1. 纯数据结构Java实现(5/11)(Set&Map)

    纯数据结构Java实现(5/11)(Set&Map) Set 和 Map 都是抽象或者高级数据结构,至于底层是采用树还是散列则根据需要而定. 可以细想一下 TreeMap/HashMap, T ...

  2. 纯数据结构Java实现(0/11)(开篇)

    为嘛要写 本来按照我的风格,其实很不喜欢去写这些细节的东西,因为笔记上直接带过了. 本来按照我的风格,如果要写,那也是直接上来就干,根本不解释这些大纲,参考依据. 本来按照我的风格,不想太显山露水,但 ...

  3. 纯数据结构Java实现(3/11)(链表)

    题外话: 篇幅停了一下,特意去看看其他人写的类似的内容:然后发现类似博主喜欢画图,喜欢讲解原理. (于是我就在想了,理解数据结构的确需要画图,但我的文章写给懂得人看,只配少量图即可,省事儿) 下面正题 ...

  4. 纯数据结构Java实现(1/11)(动态数组)

    我怕说这部分内容太简单后,突然蹦出来一个大佬把我虐到哭,还是悠着点,踏实写 大致内容有: 增删改查,泛型支持,扩容支持,复杂度分析.(铺垫: Java语言中的数组) 基础铺垫 其实没啥好介绍的,顺序存 ...

  5. 纯数据结构Java实现(6/11)(二叉堆&优先队列)

    堆其实也是树结构(或者说基于树结构),一般可以用堆实现优先队列. 二叉堆 堆可以用于实现其他高层数据结构,比如优先队列 而要实现一个堆,可以借助二叉树,其实现称为: 二叉堆 (使用二叉树表示的堆). ...

  6. 纯数据结构Java实现(4/11)(BST)

    个人感觉,BST(二叉查找树)应该是众多常见树的爸爸,而不是弟弟,尽管相比较而言,它比较简单. 二叉树基础 理论定义,代码定义,满,完全等定义 不同于线性结构,树结构用于存储的话,通常操作效率更高.就 ...

  7. 纯数据结构Java实现(10/11)(2-3树&红黑树)

    欢迎访问我的自建博客: CH-YK Blog.

  8. 纯数据结构Java实现(9/11)(AVL)

    欢迎访问我的自建博客: CH-YK Blog.

  9. 纯数据结构Java实现(8/11)(Trie)

    欢迎访问我的自建博客: CH-YK Blog.

随机推荐

  1. 云开发新能力,支持 HTTP 调用 API

    今天来上班打开电脑,总感觉微信开发文档哪里有点不太一样,研究了半天原来是云开发又多了神级功能--HTTP API! HTTP API是什么?简单来说就是通过云开发HTTP API,可以不需要通过微信小 ...

  2. fjnu2016-2017 低程 PROBLEM B 捧杯

    #include <iostream>#include <cmath>using namespace std; int _gcd(int x,int y){ return y= ...

  3. JasperReport报表

    最近在做报表工作,公司要求使用正版免费的报表软件,想想还是用JasperReport. JasperReport是一个纯Java写的开源免费报表工具库,在java开源免费报表中,排在前列. 可是开源免 ...

  4. golang 时间转换的问题

    一般在获取到时间字符串,需要将时间字符串格式化为golang的"time.Time"对象的时候,通常有2个函数,分别是. time.Parse(layout, value stri ...

  5. kuberenetes CRD开发指南

    扩展kubernetes两个最常用最需要掌握的东西:自定义资源CRD 和 adminsion webhook, 本文教你如何十分钟掌握CRD开发. kubernetes允许用户自定义自己的资源对象,就 ...

  6. mysql中的SQL语句执行的顺序

    1. from2. on3. join4. where5. group by6. with7. having8. select9. distinct10. order by11. limit 例: s ...

  7. Linux学习笔记04

    文件查找命令find 文件查找命令: which locate find which:查找命令字所在的位置 locate:模糊匹配(只要包含关键字的文件都查找出来) 不是实时的,基于数据库查找, up ...

  8. Shell基本语法---shell脚本的输入以及脚本拥有特效地输出

    shell脚本的输入 语法:read -参数 -p:给出提示符.默认不支持"\n"换行 -s:隐藏输入的内容 -t:给出等待的时间,超时会退出read,单位是秒 -n:限制读取字符 ...

  9. DES、3DES、AES、PBE对称加密算法实现及应用

    1.对称加密算法概述 对称加密算法是应用较早的加密算法,技术成熟.在对称加密算法中,数据发信方将明文和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去.收信方收到密文后,若想解读原文 ...

  10. openGL基本概念

    OpenGL自身是一个巨大的状态机(State Machine):一系列的变量描述OpenGL此刻应当如何运行.OpenGL的状态通常被称为OpenGL上下文(Context).我们通常使用如下途径去 ...