题目描述

给出两个长度分别为n、m的序列A、B,求出B的所有长度为n的连续子序列(子串),满足:序列中第i小的数在序列的Ai位置。

输入

第一行包含两个整数n, m (2≤n≤m≤1000000)。 
第二行包含n个整数si,构成1,2,…,n的排列,1≤si≤n且si≠sj。 
第三行包含m个整数hi,表示建筑的高度(1≤hi≤109,1≤i≤m),所有的hi均不相同。 
每一行的整数之间用单个空格隔开。

输出

第一行包含1个整数k ,表示匹配的序列数目。
第二行包含k个整数,分别为在正确匹配的每个序列中与标志编号1 的条纹相对应的第1 栋建筑的编号。这些数字按升序排列,用空格隔开。如果k=0 ,第二行为空行。

样例输入

5 10
2 1 5 3 4
5 6 3 8 12 7 1 10 11 9

样例输出

2
2 6


题解

特殊匹配条件的KMP+树状数组

考虑:序列满足条件可以由 每个数前面比它小的数的个数 判定。

于是我们可以先预处理出每个数前面比它小的数应该有多少个。

然后如果暴力匹配的话肯定会TLE,于是想到KMP算法。

所以需要先求出next数组。

考虑KMP求next数组的过程:当满足条件时从前一个递推到后一个。那么可以使用树状数组维护比一个数小的数的个数,当当前小于该数的数的个数不等于应有的个数时就减少长度,并暴力将减掉的数从树状数组中删除。

由于每次next减少对应的是前面的next的增加,而next每次只增加1,因此对于每个字符的均摊时间复杂度是$O(\log m)$的。

然后求出next数组后就是匹配的过程,和求next类似,需要离散化。

因此总的时间复杂度为$O((n+m)\log m)$。貌似本题还有线性做法,然而不会= =

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 1000010
int m , a[N] , s[N] , v[N] , h[N] , t[N] , next[N] , f[N] , sta[N] , tot;
inline void add(int x , int a)
{
int i;
for(i = x ; i <= m ; i += i & -i) f[i] += a;
}
inline int query(int x)
{
int i , ans = 0;
for(i = x ; i ; i -= i & -i) ans += f[i];
return ans;
}
int main()
{
int n , i , j , p = 0;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &a[i]) , s[a[i]] = i;
for(i = 1 ; i <= n ; i ++ ) v[i] = query(s[i]) , add(s[i] , 1);
for(i = 1 ; i <= m ; i ++ ) scanf("%d" , &h[i]) , t[i] = h[i];
memset(f , 0 , sizeof(f));
for(i = 2 ; i <= n ; i ++ )
{
while(query(s[i]) != v[p + 1])
{
for(j = i - p ; j < i - next[p] ; j ++ ) add(s[j] , -1);
p = next[p];
}
next[i] = ++p , add(s[i] , 1);
}
sort(t + 1 , t + m + 1);
memset(f , 0 , sizeof(f));
p = 0;
for(i = 1 ; i <= m ; i ++ )
{
h[i] = lower_bound(t + 1 , t + m + 1 , h[i]) - t;
while(p == n || query(h[i]) != v[p + 1])
{
for(j = i - p ; j < i - next[p] ; j ++ ) add(h[j] , -1);
p = next[p];
}
p ++ , add(h[i] , 1);
if(p == n) sta[++tot] = i - n + 1;
}
printf("%d\n" , tot);
for(i = 1 ; i < tot ; i ++ ) printf("%d " , sta[i]);
if(tot) printf("%d" , sta[tot]);
return 0;
}

【bzoj2384】[Ceoi2011]Match 特殊匹配条件的KMP+树状数组的更多相关文章

  1. luoguP4696 [CEOI2011]Matching KMP+树状数组

    可以非常轻易的将题意转化为有多少子串满足排名相同 注意到$KMP$算法只会在当前字符串的某尾添加和删除字符 因此,如果添加和删除后面的字符对于前面的字符没有影响时,我们可以用$KMP$来模糊匹配 对于 ...

  2. 【POJ 3167】Cow Patterns (KMP+树状数组)

    Cow Patterns Description A particular subgroup of K (1 <= K <= 25,000) of Farmer John's cows l ...

  3. 【未完】训练赛20190304:KMP+树状数组+线段树+优先队列

    头炸了啊,只做出L题,前两天刚看的Shawn zhou的博客学习的,幸亏看了啊,否则就爆零了,发现题目都是经典题,线段树,KMP,我都没看过,最近又在复习考研,真后悔大一大二没好好学习啊,得抽时间好好 ...

  4. 【poj 3167】Cow Patterns(字符串--KMP匹配+数据结构--树状数组)

    题意:给2个数字序列 a 和 b ,问按从小到达排序后,a中的哪些子串与b的名次匹配. a 的长度 N≤100,000,b的长度 M≤25,000,数字的大小 K≤25. 解法:[思考]1.X 暴力. ...

  5. [bzoj1892][bzoj2384][bzoj1461][Ceoi2011]Match/字符串的匹配_KMP_树状数组

    2384: [Ceoi2011]Match 1892: Match 1461: 字符串的匹配 题目大意: 数据范围: 题解: 很巧妙的一道题呀. 需要对$KMP$算法有很深的理解才行. 首先我们需要发 ...

  6. 【bzoj4641】基因改造 特殊匹配条件的KMP

    题目描述 如果两个长度相等的字符串,如果存在一种字符的一一映射,使得第一个字符串的所有字符经过映射后与第二个字符串相同,那么就称它们“匹配”.现在给出两个串,求第一个字符串所有长度等于第二个字符串的长 ...

  7. bzoj1264 [AHOI2006]基因匹配Match 树状数组+lcs

    1264: [AHOI2006]基因匹配Match Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1255  Solved: 835[Submit][ ...

  8. 【LOJ#2507】[CEOI2011]Matching(KMP,树状数组)

    [LOJ#2507][CEOI2011]Matching(KMP,树状数组) 题面 LOJ 题解 发现要做的是排名串的匹配. 然后我们考虑把它转成这个位置之前有多少个数小于当前这个数,这样子只要每个位 ...

  9. bzoj 1264 [AHOI2006]基因匹配Match(DP+树状数组)

    1264: [AHOI2006]基因匹配Match Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 793  Solved: 503[Submit][S ...

随机推荐

  1. 全盘解决eclipse之maven项目报错

    每次新建maven的web(war包方式)项目时都会报错而且都要手动改,很麻烦 解决:(注意里面的jdk版本换成自己的) 改变maven配置文件   settings.xml 在文件的<prof ...

  2. 邮件发送失败问题:Sending the email to the following server failed : smtp.qiye.163.com:25

    [邮件发送错误] : Sending the email to the following server failed : smtp.qiye.163.com:25, {}org.apache.com ...

  3. 【Win10分区教程】

    Win10怎么分区?如何为Win10硬盘分区? 注:本教程适用于Win7.Win8.Win8.1和Win10系 到了Windows10时代,TB级硬盘已经很普及了,那么在Win10系统下如何为这些大容 ...

  4. Shell 脚本进程并发&进程数控制

    Shell 都以串行的方式自上而下执行命令,不适用需要大量作业的场景. 学习此篇shell脚本进程并发,能够大大提高工作效率~ 通过wait 和 & 后台符号 可以实现并行,但无法控制进程数. ...

  5. npm cnpm npx nvm 傻傻分不清

    用过 npm cnpm吗?知道 npx nvm 吗? 唔~ npm npm 的全称是 Node Package Manager 是 JavaScript 世界的包管理工具,并且是 Node.js 平台 ...

  6. 其他乱七八糟的css

    white-space:normal; word-break:break-all;字母数字强制换行表格宽度失效给上table-layout:fixed(display: table-cell;此元素会 ...

  7. 部署node api的二三事

    当接到node开发node api的时候,我就想用docker来部署,众所周知,node的版本更新迭代很快.很多以前需要babel后才能采用的方法正在不断被node 原生的支持.如果随便更换生产服务器 ...

  8. 介绍几个PHP 自带的加密解密函数

    PHP 自带的加密解密函数 目前经常使用的加密函数有:md5(), sha1(), crypt(), base64_encode(), urlencode() . 其中 md5(), sha1(), ...

  9. 网站漏洞修复之最新版本UEditor漏洞

    UEditor于近日被曝出高危漏洞,包括目前官方UEditor 1.4.3.3 最新版本,都受到此漏洞的影响,ueditor是百度官方技术团队开发的一套前端编辑器,可以上传图片,写文字,支持自定义的h ...

  10. 一种简单实用的双向电平转换电路3.3V-5V

    当你使用3.3V的单片机的时候,电平转换就在所难免了,经常会遇到3.3转5V或者5V转3.3V的情况,这里介绍一个简单的电路,他可以实现两个电平的相互转换(注意是相互哦,双向的,不是单向的!).电路十 ...