[BZOJ3196][Tyvj1730]二逼平衡树

试题描述

您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:

  1. 查询 \(k\) 在区间内的排名

  2. 查询区间内排名为 \(k\) 的值

  3. 修改某一位值上的数值

  4. 查询 \(k\) 在区间内的前驱(前驱定义为小于 \(x\),且最大的数)

  5. 查询 \(k\) 在区间内的后继(后继定义为大于 \(x\),且最小的数)

输入

第一行两个数 \(n,m\) 表示长度为 \(n\) 的有序序列和 \(m\) 个操作

第二行有 \(n\) 个数,表示有序序列

下面有 \(m\) 行,\(opt\) 表示操作标号

若 \(opt=1\) 则为操作 \(1\),之后有三个数 \(l,r,k\) 表示查询 \(k\) 在区间 \([l,r]\) 的排名

若 \(opt=2\) 则为操作 \(2\),之后有三个数 \(l,r,k\) 表示查询区间 \([l,r]\) 内排名为 \(k\) 的数

若 \(opt=3\) 则为操作 \(3\),之后有两个数 \(pos,k\) 表示将 \(pos\) 位置的数修改为 \(k\)

若 \(opt=4\) 则为操作 \(4\),之后有三个数 \(l,r,k\) 表示查询区间 \([l,r]\) 内 \(k\) 的前驱

若 \(opt=5\) 则为操作 \(5\),之后有三个数 \(l,r,k\) 表示查询区间 \([l,r]\) 内 \(k\) 的后继

输出

对于操作 \(1,2,4,5\) 各输出一行,表示查询结果

输入示例

9 6
4 2 2 1 9 4 0 1 1
2 1 4 3
3 4 10
2 1 4 3
1 2 5 9
4 3 9 5
5 2 8 5

输出示例

2
4
3
4
9

数据规模及约定

  1. \(n\) 和 \(m\) 的数据范围:\(n,m \le 50000\)

  2. 序列中每个数的数据范围:\([0,10^8]\)

  3. 虽然原题没有,但事实上 \(5\) 操作的 \(k\) 可能为负数

题解

填个坑学了学 fhq treap,感觉挺好写的,还可以轻易地可持久化。就用这个树套树裸题练练手。(下面代码是 \(O(n \log^3 n)\) 的)

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
#define rep(i, s, t) for(int i = (s), mi = (t); i <= mi; i++)
#define dwn(i, s, t) for(int i = (s), mi = (t); i >= mi; i--) int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
} #define maxn 50010
#define maxnode 2000010
#define oo 2147483647
#define pii pair <int, int>
#define x first
#define y second
#define mp(x, y) make_pair(x, y) int n, A[maxn]; struct Node {
int v, r, siz;
Node() {}
Node(int _): v(_), r(rand()), siz(1) {}
} ns[maxnode];
int ToT, rt[maxn<<2], ch[maxnode][2]; void maintain(int o) {
if(!o) return ;
ns[o].siz = 1;
if(ch[o][0]) ns[o].siz += ns[ch[o][0]].siz;
if(ch[o][1]) ns[o].siz += ns[ch[o][1]].siz;
return ;
}
int merge(int a, int b) {
if(!a) return maintain(b), b;
if(!b) return maintain(a), a;
if(ns[a].r > ns[b].r) return ch[a][1] = merge(ch[a][1], b), maintain(a), a;
return ch[b][0] = merge(a, ch[b][0]), maintain(b), b;
}
pii split(int o, int v) {
if(!o) return mp(0, 0);
pii pr;
if(v <= ns[o].v) {
pr = split(ch[o][0], v);
ch[o][0] = pr.y; maintain(o);
return mp(pr.x, o);
}
pr = split(ch[o][1], v);
ch[o][1] = pr.x; maintain(o);
return mp(o, pr.y);
}
void Insert(int& o, int v) {
pii pr = split(o, v);
ns[++ToT] = Node(v);
o = merge(pr.x, ToT);
o = merge(o, pr.y);
return ;
}
void Delete(int& o, int v) {
if(!o) return ;
if(v == ns[o].v) return (void)(o = merge(ch[o][0], ch[o][1]));
if(v < ns[o].v) Delete(ch[o][0], v);
else Delete(ch[o][1], v);
return maintain(o);
}
int qrnk(int o, int v) {
if(!o) return 0;
int ls = ch[o][0] ? ns[ch[o][0]].siz : 0;
if(v <= ns[o].v) return qrnk(ch[o][0], v);
return ls + 1 + qrnk(ch[o][1], v);
}
int qpre(int o, int v) {
if(!o) return -1;
if(ns[o].v < v) return max(ns[o].v, qpre(ch[o][1], v));
return qpre(ch[o][0], v);
}
int qnxt(int o, int v) {
if(!o) return oo;
if(ns[o].v > v) return min(ns[o].v, qnxt(ch[o][0], v));
return qnxt(ch[o][1], v);
} void build(int o, int l, int r) {
rep(i, l, r) Insert(rt[o], A[i]);
if(l == r) return ;
int mid = l + r >> 1, lc = o << 1, rc = lc | 1;
build(lc, l, mid); build(rc, mid + 1, r);
return ;
}
int modify(int o, int l, int r, int p, int v) {
if(l == r) {
int tmp = ns[rt[o]].v;
Delete(rt[o], tmp);
Insert(rt[o], v);
return tmp;
}
int mid = l + r >> 1, lc = o << 1, rc = lc | 1, tmp;
if(p <= mid) Delete(rt[o], tmp = modify(lc, l, mid, p, v)), Insert(rt[o], v);
else Delete(rt[o], tmp = modify(rc, mid + 1, r, p, v)), Insert(rt[o], v);
return tmp;
}
int qsmaller(int o, int l, int r, int ql, int qr, int v) {
if(ql <= l && r <= qr) return qrnk(rt[o], v);
int mid = l + r >> 1, lc = o << 1, rc = lc | 1, ans = 0;
if(ql <= mid) ans += qsmaller(lc, l, mid, ql, qr, v);
if(qr > mid) ans += qsmaller(rc, mid + 1, r, ql, qr, v);
return ans;
}
int qkth(int ql, int qr, int k) {
int l = 0, r = (int)1e8 + 1;
while(r - l > 1) {
int mid = l + r >> 1;
if(qsmaller(1, 1, n, ql, qr, mid) + 1 <= k) l = mid; else r = mid;
}
return l;
}
int askpre(int o, int l, int r, int ql, int qr, int v) {
if(ql <= l && r <= qr) return qpre(rt[o], v);
int mid = l + r >> 1, lc = o << 1, rc = lc | 1, ans = -1;
if(ql <= mid) ans = max(ans, askpre(lc, l, mid, ql, qr, v));
if(qr > mid) ans = max(ans, askpre(rc, mid + 1, r, ql, qr, v));
return ans;
}
int asknxt(int o, int l, int r, int ql, int qr, int v) {
if(ql <= l && r <= qr) return qnxt(rt[o], v);
int mid = l + r >> 1, lc = o << 1, rc = lc | 1, ans = oo;
if(ql <= mid) ans = min(ans, asknxt(lc, l, mid, ql, qr, v));
if(qr > mid) ans = min(ans, asknxt(rc, mid + 1, r, ql, qr, v));
return ans;
} int main() {
n = read(); int q = read();
rep(i, 1, n) A[i] = read(); build(1, 1, n);
while(q--) {
int tp = read(), l, r, k;
if(tp == 1) l = read(), r = read(), k = read(), printf("%d\n", qsmaller(1, 1, n, l, r, k) + 1);
if(tp == 2) l = read(), r = read(), k = read(), printf("%d\n", qkth(l, r, k));
if(tp == 3) l = read(), k = read(), modify(1, 1, n, l, k);
if(tp == 4) l = read(), r = read(), k = read(), printf("%d\n", askpre(1, 1, n, l, r, k));
if(tp == 5) l = read(), r = read(), k = read(), printf("%d\n", asknxt(1, 1, n, l, r, k));
} return 0;
}

[BZOJ3196][Tyvj1730]二逼平衡树的更多相关文章

  1. BZOJ3196 Tyvj1730 二逼平衡树 【树套树】 【线段树套treap】

    BZOJ3196 Tyvj1730 二逼平衡树 Description 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排名 2.查询区间内排名 ...

  2. [bzoj3196][Tyvj1730]二逼平衡树_树套树_位置线段树套非旋转Treap/树状数组套主席树/权值线段树套位置线段树

    二逼平衡树 bzoj-3196 Tyvj-1730 题目大意:请写出一个维护序列的数据结构支持:查询给定权值排名:查询区间k小值:单点修改:查询区间内定值前驱:查询区间内定值后继. 注释:$1\le ...

  3. bzoj3196 [TYVJ1730]二逼平衡树 树套树 线段树套替罪羊树

    人傻自带大常数 二分的可行性证明: 贴近他的正确答案不会被当作次优解删掉,因为,若二分在他右边发生,那么二分一定会把左边作为优解,左边同理,所以他一定是被扣掉的所以最后一个小于等于一定是正确答案 #i ...

  4. bzoj3196:Tyvj1730二逼平衡树

    传送门 暴力啊,直接树套树上啊 线段树套splay,卡卡常就直接A了 代码: #include<cstdio> #include<iostream> #include<a ...

  5. [BZOJ3196] [Tyvj1730] 二逼平衡树(线段树 套 Splay)

    传送门 至少BZOJ过了,其他的直接弃. 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排名 2.查询区间内排名为k的值 3.修改某一位值上的 ...

  6. 【BZOJ3196】二逼平衡树(树状数组,线段树)

    [BZOJ3196]二逼平衡树(树状数组,线段树) 题面 BZOJ题面 题解 如果不存在区间修改操作: 搞一个权值线段树 区间第K大--->直接在线段树上二分 某个数第几大--->查询一下 ...

  7. [TYVJ1730]二逼平衡树

    [TYVJ1730]二逼平衡树 题目 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:1.查询k在区间内的排名2.查询区间内排名为k的值3.修改某一位值上的数值4.查 ...

  8. 【BZOJ-3196】二逼平衡树 线段树 + Splay (线段树套平衡树)

    3196: Tyvj 1730 二逼平衡树 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2271  Solved: 935[Submit][Stat ...

  9. 【bzoj3196】 Tyvj1730—二逼平衡树

    http://www.lydsy.com/JudgeOnline/problem.php?id=3196 (题目链接) 题意 1.查询k在区间内的排名:2.查询区间内排名为k的值:3.修改某一位值上的 ...

随机推荐

  1. laravel框架excel 的导入导出功能

      1.简介 Laravel Excel 在 Laravel 5 中集成 PHPOffice 套件中的 PHPExcel,从而方便我们以优雅的.富有表现力的代码实现Excel/CSV文件的导入和导出. ...

  2. 第一次学习tornado小练习

    内容 这次是python的一个web框架,tornado,这个web框架在python的几个web框架中一个比较简单的web框架,刚开始接触python的时候就知道python有两个比较常用的web框 ...

  3. Linux命令备忘录:quota显示磁盘已使用的空间与限制

    quota命令用于显示用户或者工作组的磁盘配额信息.输出信息包括磁盘使用和配额限制. 语法 quota(选项)(参数) 选项 -g:列出群组的磁盘空间限制: -q:简明列表,只列出超过限制的部分: - ...

  4. MySQL分区的限制(最多有多少个分区)

    MySQL分区的限制 •   只能对数据表的整型列进行分区,或者数据列可以通过分区函数转化成整型列 •   最大分区数目不能超过1024 •   如果含有唯一索引或者主键,则分区列必须包含在所有的唯一 ...

  5. 大数据培训班 cloudera公司讲师面对面授课 CCDH CCAH CCP

    大数据助力成就非凡.大数据正在改变着商业游戏规则,为企业解决传统业务问题带来变革的机遇.毫无疑问,当未来企业尝试分析现有海量信息以推动业务价值增值时,必定会采用大数据技术. 目前对大数据的分析工具,首 ...

  6. JAXB轻松转换xml对象和java对象

    实体类如下: package com.cn.entity; import java.util.List; import javax.xml.bind.annotation.XmlAccessType; ...

  7. Django 2.0官方文档中文 渣翻 总索引(个人学习,欢迎指正)

    Django 2.0官方文档中文 渣翻 总索引(个人学习,欢迎指正) 置顶 2017年12月08日 11:19:11 阅读数:20277 官方原文: https://docs.djangoprojec ...

  8. javascript数据相关处理,序列化反序列化,数据编码与解码

    对象序列化简而言之,将对象转为字符串.在数据的传输过程中,经常会使用到对象序列化. javascript中常用的对象序列化:JSON.stringify(); javascript中常用的对象反序列化 ...

  9. 问题 C: 质因数的个数

    1947: 质因数的个数 时间限制: 1 Sec  内存限制: 32 MB提交: 245  解决: 114[提交][状态][讨论版][命题人:外部导入] 题目描述 求正整数N(N>1)的质因数的 ...

  10. Leetcode 684.冗余连接

    冗余连接 在本问题中, 树指的是一个连通且无环的无向图. 输入一个图,该图由一个有着N个节点 (节点值不重复1, 2, ..., N) 的树及一条附加的边构成.附加的边的两个顶点包含在1到N中间,这条 ...