题目大意:

给定一棵n个结点的树

一开始黑方占据1号结点,白方占据n号结点

其他结点都没有颜色

每次黑方可以选择黑色结点临近的未染色结点,染成黑色

白方同理。

最后谁不能走谁输。

题解:

其实简单想想就可以想明白。

黑方肯定要往通往白方的最短路延伸,白方也是这样。

因为这样每次你可以最大化可行动次数。

所以先以1为根,dfs一遍,然后找到路径。

模拟一下走路径的过程,路径走光了就比谁的可行动次数多(有点像围棋的气的感觉),输出结果就可以了

#include <iostream>
#include <cstdio>
#include <deque>
#include <vector>
using namespace std;
const int maxn = 1e5 + ;
vector<int> G[maxn];
int deep[maxn], sz[maxn], f[maxn];
deque<int> Q;
void dfs(int x, int fa, int d){
deep[x] = d;
sz[x] = ;
f[x] = fa;
for(auto to : G[x]){
if(to == fa) continue;
dfs(to, x, d+);
sz[x] += sz[to];
}
} int main()
{
int n, x, y;
cin>>n;
for(int i = ; i < n; i++){
scanf("%d %d", &x, &y);
G[x].push_back(y);
G[y].push_back(x);
}
dfs(, , );
x = n;
while(x != ){
Q.push_back(x);
x = f[x];
}
Q.push_back();
int ansB = , ansW = , B = , W, temp;
while(){
if(Q.empty()){
ansB += sz[B]--sz[W];
ansW = sz[W] - ansW;
if(ansB <= ansW) cout<<"Snuke"<<endl;
else cout<<"Fennec"<<endl;
return ;
}
temp = B;
B = Q.back(); Q.pop_back();
if(temp != ) ansB += sz[temp]-sz[B]-;
if(Q.empty()) {
ansB += sz[B]--sz[W];
ansW = sz[W] - ansW;
if(ansW <= ansB) cout<<"Fennec"<<endl;
else cout<<"Snuke"<<endl;
return ;
}
W = Q.front(); Q.pop_front();
ansW++;
}
}

ARC078 D.Fennec VS. Snuke(树上博弈)的更多相关文章

  1. 51nod_1490: 多重游戏(树上博弈)

    题目链接 该题实质上是一个树上博弈的问题.要定义四种状态--2先手必胜 1先手必败 3可输可赢 0不能控制 叶子结点为先手必胜态: 若某结点的所有儿子都是先手必败态,则该结点为先手必胜态: 若某结点的 ...

  2. 【AtCoder078D】Fennec VS. Snuke

    AtCoder Regular Contest 078 D - Fennec VS. Snuke 题意 给一个树,1是白色,n是黑色,其它没有颜色.Fennec每次可以染白色点的直接邻居为白色.Snu ...

  3. Fennec VS. Snuke

    Fennec VS. Snuke Time limit : 2sec / Memory limit : 256MB Score : 400 points Problem Statement Fenne ...

  4. Fennec VS. Snuke --AtCoder

    题目描述 Fennec and Snuke are playing a board game.On the board, there are N cells numbered 1 through N, ...

  5. AtCoder Beginner Contest 067 D - Fennec VS. Snuke

    D - Fennec VS. Snuke Time limit : 2sec / Memory limit : 256MB Score : 400 points Problem Statement F ...

  6. 51nod 1490: 多重游戏(树上博弈)

    题目链接 该题实质上是一个树上博弈的问题.要定义四种状态——2先手必胜 1先手必败 3可输可赢 0不能控制 叶子结点为先手必败态: 若某结点的所有儿子都是先手必败态,则该结点为先手必胜态: 若某结点的 ...

  7. ABC Fennec VS. Snuke

    题目描述 Fennec and Snuke are playing a board game. On the board, there are N cells numbered 1 through N ...

  8. hihocoder1545 : 小Hi和小Ho的对弈游戏(树上博弈&nim博弈)

    描述 小Hi和小Ho经常一起结对编程,他们通过各种对弈游戏决定谁担任Driver谁担任Observer. 今天他们的对弈是在一棵有根树 T 上进行的.小Hi和小Ho轮流进行删除操作,其中小Hi先手. ...

  9. HDU - 5996 树上博弈 BestCoder Round #90

    就是阶梯NIM博弈,那么看层数是不是奇数的异或就行了: #include<iostream> #include<cstdio> #include<algorithm> ...

随机推荐

  1. Java中replace与replaceAll区别

    看门见山 1.java中replace API: replace(char oldChar, char newChar):寓意为:返回一个新的字符串,它是通过用 newChar 替换此字符串中出现的所 ...

  2. Linux系统修改/etc/sysconfig/i18n文件,桌面无法正常显示

    在Windows环境下使用SSH Secure Shell Client登陆VMware Workstation中Linux系统查询hive表时,中文显示乱码:数字和url显示为NULL,网上说: 1 ...

  3. Vue插槽 slot

    1. 什么是插槽 插槽slot 是往父组件中插入额外内容,实现组件的复用,一个插槽插入到一个对应的标签中 2. 实例: 一个组件中不允许有两个匿名插槽 </head> <body&g ...

  4. web开发学习路线

    第一阶段: HTML+CSS: HTML进阶.CSS进阶.div+css布局.HTML+css整站开发. JavaScript基础: Js基础教程.js内置对象常用方法.常见DOM树操作大全.ECMA ...

  5. Ubuntu 16.04 swoole扩展安装注意!!!

    前言:目前很多项目估计常常会用到swoole扩展,如个人使用Ubuntu虚拟机安装扩展,这里总结一下遇到的问题: 一.先保证服务器时间同步当前地区时间,如北京时间: 1.设定时区 如:设定时区:dpk ...

  6. 双击 ajax修改单元格里的值

    最终效果 列表页面表格里双击排序修改其值 按钮样式要引入bootstrap才可以用 本文件用的是laravel框架环境 larave路由里 Route::get('category/changesta ...

  7. python 装饰器 生成及原里

    # 装饰器形成的过程 : 最简单的装饰器 有返回值的 有一个参数 万能参数 # 装饰器的作用 # 原则 :开放封闭原则 # 语法糖 :@ # 装饰器的固定模式 #不懂技术 import time # ...

  8. ctf题目writeup(8)

    2019.2.11 南京邮电的ctf平台: 地址http://ctf.nuptzj.cn/challenges# 他们好像搭新的平台了...我注册弄了好半天... 1. 签到题,打开网址: 查看一下页 ...

  9. python2.7练习小例子(五)

        5):题目:输入三个整数x,y,z,请把这三个数由小到大输出.     程序分析:我们想办法把最小的数放到x上,先将x与y进行比较,如果x>y则将x与y的值进行交换,然后再用x与z进行比 ...

  10. C#基础--之数据类型【转】

    在第一章我们了解了C#的输入.输出语句后,我这一节主要是介绍C#的基础知识,本节的内容也是后续章节的基础,好的开端等于成功的一半.在你阅读完本章后,你就有足够的C#知识编写简单的程序了.但还不能使用继 ...