[LeetCode] 70. Climbing Stairs(斐波那契数列)
【思路】
a.因为两种跳法,1阶或者2阶,那么假定第一次跳的是一阶,那么剩下的是n-1个台阶,跳法是f(n-1);
b.假定第一次跳的是2阶,那么剩下的是n-2个台阶,跳法是f(n-2)
c.由a、b假设可以得出总跳法为: f(n) = f(n-1) + f(n-2)
d.然后通过实际的情况可以得出:只有一阶的时候 f(1) = 1 ,只有两阶的时候可以有 f(2) = 2
e.可以发现最终得出的是一个斐波那契数列。
由于直接用递归会超时,于是用数组来存储每一个位置的走法数目。代码如下:
class Solution {
public:
int climbStairs(int n) {
if(n == || n == || n == )
return n;
int *res = new int[n + ];
res[] = ; //有1级台阶时
res[] = ; //有2级台阶时
for(int i = ;i <= n;i ++)
{
res[i] = res[i - ] + res[i - ];
}
return res[n];
}
};
[LeetCode] 70. Climbing Stairs(斐波那契数列)的更多相关文章
- [LeetCode] Climbing Stairs 斐波那契数列
You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...
- [每日一题2020.06.14]leetcode #70 爬楼梯 斐波那契数列 记忆化搜索 递推通项公式
题目链接 题意 : 求斐波那契数列第n项 很简单一道题, 写它是因为想水一篇博客 勾起了我的回忆 首先, 求斐波那契数列, 一定 不 要 用 递归 ! 依稀记得当年校赛, 我在第一题交了20发超时, ...
- [LeetCode] 70. Climbing Stairs 爬楼梯问题
You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...
- 42. leetcode 70. Climbing Stairs
70. Climbing Stairs You are climbing a stair case. It takes n steps to reach to the top. Each time y ...
- LN : leetcode 70 Climbing Stairs
lc 70 Climbing Stairs 70 Climbing Stairs You are climbing a stair case. It takes n steps to reach to ...
- leetCode 70.Climbing Stairs (爬楼梯) 解题思路和方法
Climbing Stairs You are climbing a stair case. It takes n steps to reach to the top. Each time you ...
- Leetcode 70 Climbing Stairs 递推
其实就是斐波那契数列 参考dp[n] = dp[n-1] +dp[n-2]; class Solution { public: int climbStairs(int n) { ; ; ; ; i & ...
- C#版 - 剑指offer 面试题9:斐波那契数列及其变形(跳台阶、矩形覆盖) 题解
面试题9:斐波那契数列及其变形(跳台阶.矩形覆盖) 提交网址: http://www.nowcoder.com/practice/c6c7742f5ba7442aada113136ddea0c3?tp ...
- [Amazon] Program for Fibonacci numbers 斐波那契数列
The Fibonacci numbers are the numbers in the following integer sequence. 0, 1, 1, 2, 3, 5, 8, 13, 21 ...
随机推荐
- 【PTA 天梯赛】L2-016. 愿天下有情人都是失散多年的兄妹(深搜)
呵呵.大家都知道五服以内不得通婚,即两个人最近的共同祖先如果在五代以内(即本人.父母.祖父母.曾祖父母.高祖父母)则不可通婚.本题就请你帮助一对有情人判断一下,他们究竟是否可以成婚? 输入格式: 输入 ...
- Co. - Microsoft - Windows - Tomcat、JDK、MySQL通过 Inno 集成为exe部署包
需求 客户设备为Windows系统,需要部署公司产品,因此将Tomcat.JDK.MySQL.Java.war 打包整合成exe文件,Windows下一键部署安装. 最佳实践 1.下载免安装的mysq ...
- 使用CSS3制作首页登录界面实例
响应式设计 在这个页面中,使用下面3点来完成响应式设计 1.最大宽度 .设定了一个 max-width 的最大宽度,以便在大屏幕时兼容.: 2.margin : 30px auto; 使其保持时刻居中 ...
- Mina 组件介绍之 IoBuffer
在Java NIO 中,ByteBuffer通常作为通信中传递消息的载体.而在Mina中,采用了IoBuffer代替ByteBuffer.Mina给出了不用ByteBuffer的两个主要理由: 1. ...
- c#学习笔记《1》——regex类
C#regex是正则表达式类用于string的处理,查找匹配的字符串.1,先看一个例子Regex regex=new Regex(@”OK“)://我们要在目标字符串中找到"OK" ...
- ionic 做移动应用怎么样?
看了很多网上的赞美性介绍后,我们选用了这个做开发,目前碰到的坑有: android, list界面上下滑动会lag ios下,当键盘弹出时,你可以选择整个页面scroll,也可以选择不scroll,但 ...
- 【Thrift一】Thrift安装部署
Thrift安装部署 Thrift安装部署 下载源码包 安装g++ 解压Thrift安装包 安装boost开发工具 测试(python版) 下载源码包 wget http://apache.fayea ...
- 列表排序之NB三人组附加一个希尔排序
NB三人组之 快速排序 def partition(li, left, right): tmp = li[left] while left < right: while left < ri ...
- 03---Nginx配置文件
#启动子进程程序默认用户#user nobody;#一个主进程和多个工作进程.工作进程是单进程的,且不需要特殊授权即可运行:这里定义的是工作进程数量worker_processes 1; #全局错误日 ...
- loj136 (最小瓶颈路,多次询问)
题目描述 给定一个包含 n nn 个节点和 m mm 条边的图,每条边有一个权值.你的任务是回答 k kk 个询问,每个询问包含两个正整数 s ss 和 t tt 表示起点和终点,要求寻找从 s ss ...