哇好开心啊!写的时候真的全然对于这个加法没有把握,但还是大着胆子试着写了一下——竟然过了样例?于是又调了一下就过啦。

不过想想也觉得是正确的吧,互相独立的事件对于期望的影响自然也是相互独立的,可以把所有的情况看成一个整体,不同的统计方式只是分组的区别,最后算出来的答案肯定是一样的。dp的状态比较显然:dp[i][j][0/1]代表当前在第i节课,已经用去了j次申请的机会,0/1分别代表当前这一节课是否申请。那么这个时候就分情况讨论,计算这一次的选择对于答案的影响。

这些不同的情况分别是:当前和上一次是否选择申请换课,申请换课的是否成功。

期望的计算式:成功的概率*成功的代价+失败的概率*失败的代价。

#include <bits/stdc++.h>
using namespace std;
#define maxn 2050
#define INF 1047483640
#define maxm 2050
#define maxv 400
int n, m, v, e, dis[maxv][maxv], c[maxn], d[maxn];
double ans = , dp[maxn][maxm][], k[maxn]; int read()
{
int x = , k = ;
char c;
c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} void init()
{
for(int i = ; i <= v; i ++)
for(int j = i + ; j <= v; j ++)
dis[i][j] = dis[j][i] = INF; for(int i = ; i <= n; i ++)
for(int j = ; j <= m; j ++)
dp[i][j][] = dp[i][j][] = INF;
} double gmin(double &x, double y)
{
x = (x < y) ? x : y;
} int gmin2(int &x, int y)
{
x = (x < y) ? x : y;
} void Floyd()
{
for(int k = ; k <= v; k ++)
for(int i = ; i <= v; i ++)
for(int j = ; j <= v; j ++)
gmin2(dis[i][j], dis[i][k] + dis[k][j]);
} int main()
{
n = read(), m = read(), v= read(), e = read();
for(int i = ; i <= n; i ++) c[i] = read();
for(int i = ; i <= n; i ++) d[i] = read();
init();
dp[][][] = dp[][][] = ;
for(int i = ; i <= n; i ++) scanf("%lf", &k[i]);
for(int i = ; i <= e; i ++)
{
int x = read(), y = read(), z = read();
dis[x][y] = dis[y][x] = min(dis[y][x], z);
}
for(int i = ; i <= v; i ++) dis[i][i] = ;
Floyd();
for(int i = ; i <= v; i ++)
dis[i][] = dis[][i] = ;
c[] = d[] = , k[] = ;
for(int i = ; i <= n; i ++)
for(int j = ; j <= m; j ++)
{
gmin(dp[i][j][], dp[i - ][j][] + dis[c[i]][c[i - ]]);
gmin(dp[i][j][], dp[i - ][j][] + dis[c[i]][c[i - ]] * ( - k[i - ]) + dis[c[i]][d[i - ]] * k[i - ]);
if(j) gmin(dp[i][j][], dp[i - ][j - ][] + dis[c[i]][c[i - ]] * ( - k[i]) + dis[d[i]][c[i - ]] * k[i]);
double tem = ;
tem += dis[c[i]][c[i - ]] * ( - k[i]) * ( - k[i - ]);
tem += dis[c[i]][d[i - ]] * ( - k[i]) * k[i - ];
tem += dis[d[i]][c[i - ]] * k[i] * ( - k[i - ]);
tem += dis[d[i]][d[i - ]] * k[i] * k[i - ];
if(j) gmin(dp[i][j][], dp[i - ][j - ][] + tem);
}
for(int i = ; i <= m; i ++)
gmin(ans, min(dp[n][i][], dp[n][i][]));
printf("%.2lf", ans);
return ;
}

【题解】NOIP2016换教室的更多相关文章

  1. [NOIP2016]换教室 题解(奇怪的三种状态)

    2558. [NOIP2016]换教室 [题目描述] 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第i(1< ...

  2. [NOIP2016]换教室 D1 T3 Floyed+期望DP

    [NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...

  3. BZOJ 4720 [Noip2016]换教室

    4720: [Noip2016]换教室 Description 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程.在可以选择的课程中,有2n节课程安排在n个时间段上.在第i( ...

  4. 【BZOJ】4720: [Noip2016]换教室

    4720: [Noip2016]换教室 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1690  Solved: 979[Submit][Status ...

  5. bzoj4720: [Noip2016]换教室(期望dp)

    4720: [Noip2016]换教室 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1294  Solved: 698[Submit][Status ...

  6. 【bzoj4720】[NOIP2016]换教室

    题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程.在可以选择的课程中,有2n节课程安排在n个时间段上.在第i(1≤i≤n)个时间段上,两节内容相同的课程同时在不同的 ...

  7. [NOIP2016]换教室(概率期望$DP$)

    其实吧我老早就把这题切了--因为说实话,这道题确实不难啊--李云龙:比他娘的状压DP简单多了 今天我翻以前在Luogu上写的题解时,突然发现放错代码了,然后被一堆人\(hack\)--蓝瘦啊\(ORZ ...

  8. 【bzoj4720】[NOIP2016]换教室 期望dp

    题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程.在可以选择的课程中,有2n节课程安排在n个时间段上.在第i(1≤i≤n)个时间段上,两节内容相同的课程同时在不同的 ...

  9. [NOIp2016] 换教室

    题目类型:期望\(DP\) 传送门:>Here< 题意:现有\(N\)个时间段,每个时间段上一节课.如果不申请换教室,那么时间段\(i\)必须去教室\(c[i]\)上课,如果申请换课成功, ...

  10. NOIP2016换教室 BZOJ 4720

    BZOJ 4720 换教室 题目描述: 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程.在可以选择的课程中,有2n节 课程安排在n个时间段上.在第i(1≤i≤n)个时间段上 ...

随机推荐

  1. python构造二维列表以及排序字典

    1. 构造二维列表: 比如我现在需要一个100*100的二维列表: a = [] for i in range(100): a.append([]) for j in range(100): a[i] ...

  2. python中的字符串(str)操作

    字符串是python中数据类型.一般就单引号(‘’)或双引号(“”)引起来的内容就是字符串. 例如:下面两个都是定义字符串 str1 = "hello world" str2 = ...

  3. PHP错误:Warning: preg_replace() [function.preg-replace]: Unknown modifier '[' in

    遇到一个PHP错误,错误提示是 Warning: preg_replace() [function.preg-replace]: Unknown modifier '[' in  .... , 当然了 ...

  4. Black And White (DFS 训练题)

    G - Black And White ================================================================================ ...

  5. java反射操作类方法与属性

    package com.fanshe.test; public class User { private int age; private String email; private String u ...

  6. npx 命令介绍

    这个是在 npmv5.2.0引入的一条命令(查看),引入这个命令的目的是为了提升开发者使用包内提供的命令行工具的体验. 为什么引入这个命令 举个例子,我们开发中要运行 parcel 命令来打包:par ...

  7. Qt irrlicht(鬼火)3D引擎 摄像机旋转问题

    点击打开链接Irrlicht中的摄像有一个函数 setUpVector() if (m_device != 0 ) { core::vector3df rotation(y,x,0.f); m_cam ...

  8. cocos2d-x 中菜单类

    菜单相关类包含:菜单类和菜单项类,菜单类图,从类图可见Menu类继承于Layer. 菜单项类图,从图中可见所有的菜单项都是从BaseMenuItem继承而来的,BaseMenuItem是抽象类,具体使 ...

  9. popen和system问题

    popen和system问题 1. 问题描述 C的代码里面去调用命令启动一个shell脚本,分别使用了下面两个途径. 其中一个是: func1(cmd) { popen(cmd,type); pclo ...

  10. 拉普拉斯矩阵(Laplacian Matrix) 及半正定性证明

    摘自 https://blog.csdn.net/beiyangdashu/article/details/49300479 和 https://en.wikipedia.org/wiki/Lapla ...