洛谷

这是一道组合数学题。

对于一个长为n的序列,首先我们要选m个使之稳定\(C^{m}_{n}\)。

且要保证剩下的序列不稳定,即错排\(D_{n-m}\)。

所以答案就是:$$ANS=C^{m}{n}+D{n-m}$$

再看看数据范围:n最大\(10^6\),错排好办,直接递推:

\[D[i]=(i-1)*(D[i-1]+D[i-2])
\]

D[0]=1,D[1]=0。

而组合数部分有点麻烦。$$C[i][j]=C[i-1][j]+C[i-1][j-1]$$

用上面这个公式可以做1000的点,\(n^2\)递推。

至于满分,我们可以用普通的组合数公式:$$C(n,m)=n!/[(n-m)!m!]$$

我们预处理ni[]表示x的阶乘。

接下来很好做了,除法取模涉及逆元,因为模数是质数,直接费马\(t^{\texttt{mod}-2}\)

所以代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll; const int mo=1e9+7;
int n,m;
ll D[1000001]={1,0,1},ni[1000001]={1}; void pre()
{
for (int i=3;i<=1000000;++i)
D[i]=(i-1)*(D[i-1]+D[i-2])%mo;
for (int i=1;i<=1000000;++i)
ni[i]=ni[i-1]*i%mo;
} ll qpow(ll x)
{
ll p=mo-2,d=1;
while (p) {
if (p&1) d=d*x%mo;
x=x*x%mo;p>>=1;
}
return d;
} int main()
{
pre();
int T;cin>>T;
while (T--) {
scanf("%d%d",&n,&m);
ll C=ni[n]*qpow(ni[m]*ni[n-m]%mo)%mo;
printf("%lld\n",C*D[n-m]%mo);
}
return 0;
}

洛谷 P4071 [SDOI2016]排列计数的更多相关文章

  1. 洛谷——P4071 [SDOI2016]排列计数(错排+组合数学)

    P4071 [SDOI2016]排列计数 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列 ...

  2. 洛谷 P4071 [SDOI2016]排列计数 题解

    P4071 [SDOI2016]排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳 ...

  3. 洛谷P4071 [SDOI2016] 排列计数 [组合数学]

    题目传送门 排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m ...

  4. 洛谷 P2606 [ZJOI2010]排列计数 解题报告

    P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...

  5. 洛谷P2606 [ZJOI2010]排列计数(组合数 dp)

    题意 题目链接 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案 ...

  6. ●洛谷P2606 [ZJOI2010]排列计数

    题链: https://www.luogu.org/problemnew/show/P2606题解: 组合数(DP),Lucas定理 首先应该容易看出,这个排列其实是一个小顶堆. 然后我们可以考虑dp ...

  7. P4071 [SDOI2016]排列计数

    题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条 ...

  8. 洛谷P2606 [ZJOI2010]排列计数

    题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...

  9. 洛谷P2606 [ZJOI2010]排列计数(数位dp)

    题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...

随机推荐

  1. python重置变量 sys.defaultencoding

    <span style="font-family: Arial, Helvetica, sans-serif;">比如重置变量defaultencoding为utf-8 ...

  2. LeetCode 66 Plus One(加一)(vector)

    翻译 给定一个以一系列数字表示的非负数.将其加一并转换成数字. 数字存储的最高位在列的最前面. 原文 Given a non-negative number represented as an arr ...

  3. RMAN异机恢复步骤及故障处理

    一.測试机安装OS+Oracle Software.包含配置oracle用户.组和环境变量(略) 二.開始异机恢复 1. 复制源库最新备份集.初始化參数.password文件到測试机 [oracle@ ...

  4. hdu 3641 数论 二分求符合条件的最小值数学杂题

    http://acm.hdu.edu.cn/showproblem.php?pid=3641 学到: 1.二分求符合条件的最小值 /*================================= ...

  5. 未能加载文件或程序集“WebGrease, Version=1.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35”或它的某一个依赖项。找到的程序集清单定义与程序集引用不匹配。 (异常来自 HRESULT:0x80131040)

    方法一:在web.config的configuration接点中添加,最好是添加在configuration节点的最后 <runtime> <assemblyBinding xmln ...

  6. linux使用fdisk命令操作硬盘

    知识点: MBR:Master Boot Record 主引导记录 在硬盘0柱面 0磁头的第一个扇区,占512字节(3部分 主引导程序 446字节,硬盘分区表DPT[disk partion tabl ...

  7. LeetCode 75 Sort Colors(颜色排序)

    翻译 给定一个包括红色.白色.蓝色这三个颜色对象的数组.对它们进行排序以使同样的颜色变成相邻的,其顺序是红色.白色.蓝色. 在这里,我们将使用数字0.1和2分别来代表红色.白色和蓝色. 原文 Give ...

  8. 下载The Swift Programming Language.mobi版

    下载 The Swift Programming Language.mobi 下载 http://download.csdn.net/detail/swifttrain/7444501

  9. Xilinx 7系列例化MIG IP core DDR3读写

    昨晚找了一下,发现DDR3读写在工程上多是通过例化MIG,调用生成IPcore的HDL Functional Model.我说嘛,自己哪能写出那么繁琐的,不过DDR读写数据可以用到状态机,后期再添砖加 ...

  10. JavaScript之引用类型

    js中的引用类型和其他语言中类的概念很相似,但并不一样. 引用类型是一种数据结构,就像房子的骨架,承载着数据和功能的衔接. 而对象,则是引用类型的具体实现,即实例. var person = new ...