守卫者的挑战

Time Limit: 2 Sec  Memory Limit: 128 MB
[Submit][Status][Discuss]

Description

  打开了黑魔法师Vani的大门,队员们在迷宫般的路上漫无目的地搜寻着关押applepi的监狱的所在地。突然,眼前一道亮光闪过。“我,Nizem,是黑魔法圣殿的守卫者。如果你能通过我的挑战,那么你可以带走黑魔法圣殿的地图……”瞬间,队员们被传送到了一个擂台上,最初身边有一个容量为K的包包。
  擂台赛一共有N项挑战,各项挑战依次进行。第i项挑战有一个属性ai,如果ai>=0,表示这次挑战成功后可以再获得一个容量为ai的包包;如果ai=-1,则表示这次挑战成功后可以得到一个大小为1
的地图残片。地图残片必须装在包包里才能带出擂台,包包没有必要全部装满,但是队员们必须把
【获得的所有的】地图残片都带走(没有得到的不用考虑,只需要完成所有N项挑战后背包容量足够容纳地图残片即可),才能拼出完整的地图。并且他们至少要挑战成功L次才能离开擂台。
  队员们一筹莫展之时,善良的守卫者Nizem帮忙预估出了每项挑战成功的概率,其中第i项挑战成功的概率为pi%。现在,请你帮忙预测一下,队员们能够带上他们获得的地图残片离开擂台的概率。

Input

  第一行三个整数N,L,K。
  第二行N个实数,第i个实数pi表示第i项挑战成功的百分比。
  第三行N个整数,第i个整数ai表示第i项挑战的属性值.

Output

  一个整数,表示所求概率,四舍五入保留6 位小数。

Sample Input

  5 1 2
  36 44 13 83 63
  -1 2 -1 2 1

Sample Output

  0.980387

HINT

  0<=K<=2000,0<=N<=200,-1<=ai<=1000,0<=L<=N,0<=pi<=100。

Main idea

  挑战成功第 i 次会获得一个 ai 的贡献,挑战成功的概率是 pi,初始已经有K的贡献,问至少挑战成功 L 次且贡献>=0 的概率。

Solution

  简单的期望DP,由于n只有200,显然我们直接令 f[i][j][k] 表示 前 i 个挑战,胜利了 j 次,当前贡献为 k 的概率即可,然后转移一下。

  由于贡献最小只可能是-1,所以 k>=n 的时候剩下的贡献必然都>=0,所以我们上限调整为n即可,中间可能有负数,+200来实现储存。

Code

  #include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std; const int ONE = ; int n,Limit,K;
int a[ONE];
float p[ONE],Ans;
float f[ONE][ONE][ONE*]; //i times j win k bag int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} int id(int x) {return min(x,n) + ;} int main()
{
n=get(); Limit=get(); K=get();
for(int i=;i<=n;i++) scanf("%f",&p[i]), p[i]/=100.0;
for(int i=;i<=n;i++) a[i]=get(); f[][][id(K)] = ;
for(int i=; i<=n-; i++)
for(int j=; j<=i; j++)
for(int k=-i; k<=n; k++)
{
f[i+][j][id(k)] += f[i][j][id(k)] * (1.0-p[i+]); // fail
f[i+][j+][id(k+a[i+])] += f[i][j][id(k)] * p[i+]; // win
} for(int j=Limit; j<=n; j++)
for(int k=id(); k<=id(n); k++)
Ans += f[n][j][k]; printf("%.6f", Ans);
}

【BZOJ3029】守卫者的挑战 [期望DP]的更多相关文章

  1. tyvj P1864 [Poetize I]守卫者的挑战(DP+概率)

    P1864 [Poetize I]守卫者的挑战 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 打开了黑魔法师Vani的大门,队员们在迷宫般的路上漫无目的地搜 ...

  2. TYVJ.1864.[Poetize I]守卫者的挑战(概率DP)

    题目链接...无 题目: P1864 [Poetize I]守卫者的挑战 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 打开了黑魔法师Vani的大门,队员们 ...

  3. [bzoj3029] 守卫者的挑战 (概率期望dp)

    传送门 Description 打开了黑魔法师Vani的大门,队员们在迷宫般的路上漫无目的地搜寻着关押applepi的监狱的所在地.突然,眼前一道亮光闪过."我,Nizem,是黑魔法圣殿的守 ...

  4. bzoj3029 守卫者的挑战 (多维dp)

    题面: 打开了黑魔法师Vani的大门,队员们在迷宫般的路上漫无目的地搜寻着关押applepi的监狱的所在地.突然,眼前一道亮光闪过."我,Nizem,是黑魔法圣殿的守卫者.如果你能通过我的挑 ...

  5. 2018.09.27 bzoj3029: 守卫者的挑战(概率dp)

    传送门 概率dp经典题目. 直接f[i][j][k]f[i][j][k]f[i][j][k]表示当前是第i次挑战,已经胜利了j次,目前的背包剩余空间是k. 然后用前面的转移后面的就行了. 注意第三维可 ...

  6. 【bzoj3029】守卫者的挑战 概率dp

    题目描述 给出一个数$m$和$n$次操作,第$i$操作有$p_i$的概率成功,成功后会使$m$加上$a_i$($a_i$为正整数或$-1$),求$n$次操作以后成功的操作次数不少于$l$且$m\ge ...

  7. BZOJ3029守卫者的挑战(概率dp)

    题目大意:给定n个事件,第i个事件发生的概率为pi,收益为ai,初始收益为k,求n个事件之后发生的事件数>=l且收益>=0的概率 收益只可能是正整数或-1. Solution dp[i][ ...

  8. [BZOJ3029] 守卫者的挑战

    Description 打开了黑魔法师Vani的大门,队员们在迷宫般的路上漫无目的地搜寻着关押applepi的监狱的所在地.突然,眼前一道亮光闪过.“我,Nizem,是黑魔法圣殿的守卫者.如果你能通过 ...

  9. bzoj 3029 守卫者的挑战 —— 概率DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3029 设 f[i][j][k] 表示第 i 次挑战,已经成功 j 次,剩余容量为 k 的概率 ...

随机推荐

  1. Ubantu修改主机名详细步骤

    使用vmWare创建的Ubantu虚拟主机,默认的主机名均为Ubantu,通过修改主机名的使得分布式集群操作变得方便.具体步骤如下: 1.查看虚拟机的主机名:打开终端,使用 hostname 命令,回 ...

  2. CentOS修改网卡名称

    转 一.问题说明 测试环境中出现的小问题,因为虚拟机之间经常复制来复制去,导致网卡配置这块的不一致现象. 配置文件的信息: [root@ora10g network-scripts]# catifcf ...

  3. PowerMock简单使用

    网上有很多PowerMock的介绍,此处就不再罗列 下面给出一些资源地址以及几篇案例 mockito资源: (1)源码:https://github.com/mockito/mockito power ...

  4. jmeter操作JDBC

    1. 依次添加计划.线程组.JDBC Connection Configuration.JDBC Request.HTTP请求.Debug Sampler.察看结果树 在计划中导入mysql的jdbc ...

  5. tomcat 异常

    Removing obsolete files from server... Could not clean server of obsolete files: null java.lang.Null ...

  6. Unity动态换装之Spine换装

    注:转载请注明转载,并附原链接 http://www.cnblogs.com/liaoguipeng/p/5867510.html 燕双飞情侣 一.动态换装原理 换装,无非就是对模型的网格,或者贴图进 ...

  7. 关键词提取TF-IDF算法/关键字提取之TF-IDF算法

    TF-IDF(term frequency–inverse document frequency)是一种用于信息检索与信息探勘的常用加权技术.TF的意思是词频(Term - frequency),  ...

  8. MySQL训练营01

    一.数据库基础知识: 1. 数据库(database):保存有组织的数据的容器(通常是一个或者一组文件) 2. 数据库管理系统(DBMS):数据库软件,外界通过DBMS来创建和操纵数据库,具体是什么, ...

  9. erc20代币合约

    看这篇文章需要对以太坊,智能合约,代币等概念有基本的了解. 什么是ERC20 可以把ERC20简单理解成以太坊上的一个代币协议,所有基于以太坊开发的代币合约都遵守这个协议.遵守这些协议的代币我们可以认 ...

  10. SSH 项目中 使用websocket 实现网页聊天功能

    参考文章  :java使用websocket,并且获取HttpSession,源码分析    http://www.cnblogs.com/zhuxiaojie/p/6238826.html 1.在项 ...