最小生成树问题:Kruskal算法 AND Prim算法
Kruskal算法:
void Kruskal ( )
{
MST = { } ; //边的集合,最初为空集
while( EdgeAccepted < NumVertex - 1
&& E中还有边 ) //MST中边数不到V-1
{
E(V, W) = Min( E ); //最小堆
Delete( E(V, W) ); //将其从E中删除
Uset = Find( U, S ); //并查集
Vset = Find( V, S ); //并查集
if( Uset != Vset ) //E(V, W)不在MST中构成回路
{
EdgeAccepted++; //更新MST中边数
SetUnion( S, Uset, Vset ); //并入集合 //并查集
}
else
彻底无视E(V, W);
}
if (EdgeAccepted < NumVertex - 1)
ERROR(生成树不存在)
}
Prim算法时间复杂度O(V²),适用于稠密图
void Prim ( )
{
/*MST = { s, }*/ //树集中只有源点S
while ( 1 )
{
V = smallest unknow distance vertex; //未收录顶点中dist最小者
if( no V ) //V不存在
break;
dist[V] = 0; //收录
for( each W adjacent to V ) //V的每个邻接点W
{
if( dist[W] != 0 ) //如果未收录
{
if( E(V, W) < dist[W] )
{ //路径变短,更新一下
dist[W] = E(V, W);
parent[W] = V; //并查集并入树集合中
}
}
}
}
if( 收录顶点不到 != 总顶点 )
ERROR("生成树不存在");
}
初始化:dist[V] = E(s, V) OR INF;
parent[s] = -1;
最小生成树问题:Kruskal算法 AND Prim算法的更多相关文章
- Algorithm --> Kruskal算法和Prim算法
最小生成树之Kruskal算法和Prim算法 Kruskal多用于稀疏图,prim多用于稠密图. 根据图的深度优先遍历和广度优先遍历,可以用最少的边连接所有的顶点,而且不会形成回路.这种连接所有顶点并 ...
- 求最小生成树——Kruskal算法和Prim算法
给定一个带权值的无向图,要求权值之和最小的生成树,常用的算法有Kruskal算法和Prim算法.这两个算法其实都是贪心思想的使用,但又能求出最优解.(代码借鉴http://blog.csdn.net/ ...
- 最小生成树之Kruskal算法和Prim算法
依据图的深度优先遍历和广度优先遍历,能够用最少的边连接全部的顶点,并且不会形成回路. 这样的连接全部顶点并且路径唯一的树型结构称为生成树或扩展树.实际中.希望产生的生成树的全部边的权值和最小,称之为最 ...
- 最小生成数kruskal算法和prim算法
定义 连通图:在无向图中,若任意两个顶点vivi与vjvj都有路径相通,则称该无向图为连通图. 强连通图:在有向图中,若任意两个顶点vivi与vjvj都有路径相通,则称该有向图为强连通图. 连通网:在 ...
- 最小生成树(次小生成树)(最小生成树不唯一) 模板:Kruskal算法和 Prim算法
Kruskal模板:按照边权排序,开始从最小边生成树 #include<algorithm> #include<stdio.h> #include<string.h> ...
- 最小生成树---普里姆算法(Prim算法)和克鲁斯卡尔算法(Kruskal算法)
普里姆算法(Prim算法) #include<bits/stdc++.h> using namespace std; #define MAXVEX 100 #define INF 6553 ...
- 【算法】prim算法(最小生成树)(与Dijkstra算法的比较)
最小生成树: 生成树的定义:给定一个无向图,如果它的某个子图中任意两个顶点都互相连通并且是一棵树,那么这棵树就叫做生成树.(Spanning Tree) 最小生成树的定义:在生成树的基础上,如果边上有 ...
- hdu 1162 Eddy's picture (Kruskal算法,prim算法,最小生成树)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1162 [题目大意] 给你n个点的坐标,让你找到联通n个点的一种方法.保证联通的线路最短,典型的最小生成 ...
- 贪心算法-最小生成树Kruskal算法和Prim算法
Kruskal算法: 不断地选择未被选中的边中权重最轻且不会形成环的一条. 简单的理解: 不停地循环,每一次都寻找两个顶点,这两个顶点不在同一个真子集里,且边上的权值最小. 把找到的这两个顶点联合起来 ...
随机推荐
- CBV中的dispatch
之前介绍了FBV和CBV ,下面我们看一下CBV中的dispatch dispatch函数在类View中定义,作用就是通过反射查找get或post函数,所以在执行get或post函数之前,dispat ...
- git用法小结(1)--建立远程仓库
最近一直在学习使用git来管理自己的程序,总是今天东学一点,明天西凑一点,到用的时候,总是有些茫然不知所措. 在博客园里看见一篇老好的文章,教我们做笔记啦,但是做完笔记还是要记得总结哦! 来吧,让我们 ...
- jvm的GC日志分析 [转]
jvm的GC日志分析 标签: jvm内存javagc 2015-06-22 16:37 1566人阅读 评论(1) 收藏 举报 分类: Java(4) JVM的GC日志的主要参数包括如下几个: ...
- 【287】◀▶ arcpy 常用类说明
ArcPy 类列表(按字母顺序) 01 Raster 创建一个可在 Python 脚本或地图代数表达式中使用的栅格对象. 02 Cursor Cursor 是一种数据访问对象,可用于在表中迭代 ...
- 04.webservice客户端调用
不要求所有的元素都理解,真正做开发的时候,有一些必须是要用的. 以后我们做开发的时候服务访问点的集合就一个服务的访问点.服务访问点绑定了具体的一个服务类,绑定的这个东西它本身也是一个元素.往上找,四个 ...
- 固本培元之三:Convert、运算符、流程控制语句、ref/out/in三种参数类型
一.Convert类常用的类型转换方法Convert.ToInt32() 转换为整型(int)Convert.ToChar() 转换为字符型(char)Convert.ToString() 转换为字符 ...
- 一,安装python
在Windows上安装Python 首先,从Python的官方网站www.python.org下载最新的2.7.9版本,地址是这个: http://www.python.org/ftp/python/ ...
- 一个jquery在不同浏览器下的兼容性问题。
<div id ='pdiv' style='visibility:hidden;'> <div id='cdiv'>子元素</div> </div> ...
- 多线程协作 FileStream文件读写操作,读写冲突解决
using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Tex ...
- SQL 左联接去除左边重复的数据
代码如下: use DB go select table1.*,b.OPTime from [dbo].[table1] left join( select * from (select table2 ...