Kruskal算法:

void Kruskal ( )
{
    MST = { } ;                           //边的集合,最初为空集
    while( EdgeAccepted < NumVertex - 1 
                         && E中还有边 )  //MST中边数不到V-1
    {
        E(V, W) = Min( E );               //最小堆
        Delete( E(V, W) );                //将其从E中删除      
        Uset = Find( U, S );              //并查集
        Vset = Find( V, S );              //并查集
        if( Uset != Vset )                //E(V, W)不在MST中构成回路
        {
            EdgeAccepted++;               //更新MST中边数
            SetUnion( S, Uset, Vset );    //并入集合 //并查集
        }
        else 
            彻底无视E(V, W);
    }
    if (EdgeAccepted < NumVertex - 1)
        ERROR(生成树不存在)
}

Prim算法时间复杂度O(V²),适用于稠密图

void Prim ( )
{
    /*MST = { s, }*/                           //树集中只有源点S
    while ( 1 ) 
    {
        V = smallest unknow distance vertex;   //未收录顶点中dist最小者
        if( no  V )                            //V不存在
            break;
        
        dist[V] = 0;                           //收录
        for( each W adjacent to V )            //V的每个邻接点W
        {
            if( dist[W] != 0 )                 //如果未收录
            {
                if( E(V, W) < dist[W] )
                {                              //路径变短,更新一下
                    dist[W] = E(V, W);
                    parent[W] = V;             //并查集并入树集合中
                }
            }
        }
    }
    if( 收录顶点不到 != 总顶点 )
        ERROR("生成树不存在");
}
初始化:dist[V]   = E(s, V) OR INF;
        parent[s] = -1;

最小生成树问题:Kruskal算法 AND Prim算法的更多相关文章

  1. Algorithm --> Kruskal算法和Prim算法

    最小生成树之Kruskal算法和Prim算法 Kruskal多用于稀疏图,prim多用于稠密图. 根据图的深度优先遍历和广度优先遍历,可以用最少的边连接所有的顶点,而且不会形成回路.这种连接所有顶点并 ...

  2. 求最小生成树——Kruskal算法和Prim算法

    给定一个带权值的无向图,要求权值之和最小的生成树,常用的算法有Kruskal算法和Prim算法.这两个算法其实都是贪心思想的使用,但又能求出最优解.(代码借鉴http://blog.csdn.net/ ...

  3. 最小生成树之Kruskal算法和Prim算法

    依据图的深度优先遍历和广度优先遍历,能够用最少的边连接全部的顶点,并且不会形成回路. 这样的连接全部顶点并且路径唯一的树型结构称为生成树或扩展树.实际中.希望产生的生成树的全部边的权值和最小,称之为最 ...

  4. 最小生成数kruskal算法和prim算法

    定义 连通图:在无向图中,若任意两个顶点vivi与vjvj都有路径相通,则称该无向图为连通图. 强连通图:在有向图中,若任意两个顶点vivi与vjvj都有路径相通,则称该有向图为强连通图. 连通网:在 ...

  5. 最小生成树(次小生成树)(最小生成树不唯一) 模板:Kruskal算法和 Prim算法

    Kruskal模板:按照边权排序,开始从最小边生成树 #include<algorithm> #include<stdio.h> #include<string.h> ...

  6. 最小生成树---普里姆算法(Prim算法)和克鲁斯卡尔算法(Kruskal算法)

    普里姆算法(Prim算法) #include<bits/stdc++.h> using namespace std; #define MAXVEX 100 #define INF 6553 ...

  7. 【算法】prim算法(最小生成树)(与Dijkstra算法的比较)

    最小生成树: 生成树的定义:给定一个无向图,如果它的某个子图中任意两个顶点都互相连通并且是一棵树,那么这棵树就叫做生成树.(Spanning Tree) 最小生成树的定义:在生成树的基础上,如果边上有 ...

  8. hdu 1162 Eddy&#39;s picture (Kruskal算法,prim算法,最小生成树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1162 [题目大意] 给你n个点的坐标,让你找到联通n个点的一种方法.保证联通的线路最短,典型的最小生成 ...

  9. 贪心算法-最小生成树Kruskal算法和Prim算法

    Kruskal算法: 不断地选择未被选中的边中权重最轻且不会形成环的一条. 简单的理解: 不停地循环,每一次都寻找两个顶点,这两个顶点不在同一个真子集里,且边上的权值最小. 把找到的这两个顶点联合起来 ...

随机推荐

  1. MyBatis3配置文件示例及解释

    转自:https://blog.csdn.net/tobylxy/article/details/84320694 1 <?xml version="1.0" encodin ...

  2. SpringMVC Controller 介绍(详细深刻)

    一.简介 在SpringMVC 中,控制器Controller 负责处理由DispatcherServlet 分发的请求,它把用户请求的数据经过业务处理层处理之后封装成一个Model ,然后再把该Mo ...

  3. 求输出和为n的所有连续自然数序列

    这是编程之美中的一道题.编程之美中的题目是这样的: 1+2=3 4+5=9 2+3+4=9 等式的左边都是两个或者两个以上的连续自然数相加,那么是不是所有的整数都可以写成这样的形式? 问题1:写个程序 ...

  4. 配置springboot在访问404时自定义返回结果以及统一异常处理

    在搭建项目框架的时候用的是springboot,想统一处理异常,但是发现404的错误总是捕捉不到,总是返回的是springBoot自带的错误结果信息. 如下是springBoot自带的错误结果信息: ...

  5. java代理模式与装饰者模式

    静态代理和装饰者模式的区别: 先来看一下装饰者模式的定义:装饰者模式动态地将责任附加到对象上.若要扩展功能,装饰者提供了比继承更有弹性的替代方案. 总结一下采用装饰者模式是为了增强或拓展原对象的功能. ...

  6. springboot @Value 类中读取配置文件 .properties null 原因和解决方案

    问题:在一个工具类中,通过@Value来映射配置文件的值,得到的总是null 原因:不能用new工具类的方式,应该是用容器注册(@Autowried)的方式使用此工具类,就能得到配置文件里的值 上代码 ...

  7. Paper: ImageNet Classification with Deep Convolutional Neural Network

    本文介绍了Alex net 在imageNet Classification 中的惊人表现,获得了ImagaNet LSVRC2012第一的好成绩,开启了卷积神经网络在cv领域的广泛应用. 1.数据集 ...

  8. 跨域问题hbuilder

    1.借助jquery-jsonp插件 $.jsonp({ url: url, data: { 'name': usd, 'passwd': pass }, callbackParameter: &qu ...

  9. Mybaties原理图

  10. (转)使用Jquery+EasyUI 进行框架项目开发案例讲解之一 员工管理源码分享

    原文地址:http://www.cnblogs.com/huyong/p/3334848.html 在开始讲解之前,我们先来看一下什么是Jquery EasyUI?jQuery EasyUI是一组基于 ...