Schedule Problem

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1715    Accepted Submission(s): 757
Special Judge

Problem Description
A
project can be divided into several parts. Each part should be
completed continuously. This means if a part should take 3 days, we
should use a continuous 3 days do complete it. There are four types of
constrains among these parts which are FAS, FAF, SAF and SAS. A
constrain between parts is FAS if the first one should finish after the
second one started. FAF is finish after finish. SAF is start after
finish, and SAS is start after start. Assume there are enough people
involved in the projects, which means we can do any number of parts
concurrently. You are to write a program to give a schedule of a given
project, which has the shortest time.
 
Input
The input file consists a sequences of projects.

Each project consists the following lines:

the count number of parts (one line) (0 for end of input)

times should be taken to complete these parts, each time occupies one line

a list of FAS, FAF, SAF or SAS and two part number indicates a constrain of the two parts

a line only contains a '#' indicates the end of a project

 
Output
Output
should be a list of lines, each line includes a part number and the
time it should start. Time should be a non-negative integer, and the
start time of first part should be 0. If there is no answer for the
problem, you should give a non-line output containing "impossible".

A blank line should appear following the output for each project.

 
Sample Input
3
2
3
4
SAF 2 1
FAF 3 2
#
3
1
1
1
SAF 2 1
SAF 3 2
SAF 1 3
#
0
 
Sample Output
Case 1:
1 0
2 2
3 1

Case 2:
impossible

 
Source
 
题意:有n个项目,每个项目有一个周期,表示完成其的时间,然后下面有一些限制,SAF a b 表示 a 的开始时间要晚于 b的结束时间,FAF,SAS,FAS类似。问每个项目最早的开始时间,依下标输出.
题解:我们假设 a的周期是 v[a] ,开始时间是 s[a],结束时间是 e[a], b类似.
SAF 就可以表示为 s[a] - e[b]>=0 ---->s[a] - (s[b] +v[b] )>=0 这样的话就可以列出很多个关于起点的方程,然后就设立一个超级源点,和每个起点连条长度为 0 的边,从超级源点进行 spfa,得到 low数组后依次输出即可。有环则输出 impossible,今天听说spfa只要进入 sqrt(n) 次就可以判断有没有环了,这个题还真可以。。如果有题超时的话,不妨可以试试。。不过数据强的话另当别论。
#include <iostream>
#include <cstdio>
#include <string.h>
#include <queue>
#include <algorithm>
#include <math.h>
using namespace std;
typedef long long LL;
const int INF = ;
const int N = ;
struct Edge{
int v,w,next;
}edge[];
int head[N];
int n,tot;
int val[N];
void init(){
memset(head,-,sizeof(head));
tot = ;
}
void addEdge(int u,int v,int w,int &k){
edge[k].v = v,edge[k].w = w,edge[k].next = head[u],head[u] = k++;
}
int low[N],time[N];
bool vis[N];
int spfa(int s){
for(int i=;i<=n;i++){
vis[i] = false;
low[i] = -INF;
time[i] = ;
}
low[s] = ;
time[s]++;
queue<int> q;
q.push(s);
int num = ((int)sqrt(n)+); ///改成根号 n 可以AC...
while(!q.empty()){
int u = q.front();
q.pop();
vis[u] = false;
for(int k=head[u];k!=-;k=edge[k].next){
int v = edge[k].v,w=edge[k].w;
if(low[v]<low[u]+w){
low[v] = low[u]+w;
if(!vis[v]){
vis[v] = true;
q.push(v);
if(time[v]++>num) return ;
}
}
}
}
return ;
}
int main(){
int t = ;
while(scanf("%d",&n)!=EOF,n){
init();
int MAX = -;
for(int i=;i<=n;i++){
scanf("%d",&val[i]);
}
char str[];
int super = ;
while(scanf("%s",str)){
if(strcmp(str,"#")==) break;
int a,b;
scanf("%d%d",&a,&b);
if(strcmp(str,"SAF")==){
addEdge(b,a,val[b],tot);
}else if(strcmp(str,"FAF")==){
addEdge(b,a,-(val[a]-val[b]),tot);
}else if(strcmp(str,"FAS")==){
addEdge(b,a,-val[a],tot);
}else{
addEdge(b,a,,tot);
}
}
for(int i=;i<=n;i++){
addEdge(super,i,,tot);
}
printf("Case %d:\n",t++);
if(spfa(super)){
for(int i=;i<=n;i++){
printf("%d %d\n",i,low[i]);
}
}else{
printf("impossible\n");
}
printf("\n");
}
return ;
}

hdu 1534(差分约束)的更多相关文章

  1. hdu 1534(差分约束+spfa求最长路)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1534 思路:设s[i]表示工作i的开始时间,v[i]表示需要工作的时间,则完成时间为s[i]+v[i] ...

  2. hdu 1531(差分约束)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1531 差分约束的题之前也碰到过,刚好最近正在进行图论专题的训练,就拿来做一做. ①:对于差分不等式,a ...

  3. I - 动物狂想曲 HDU - 6252(差分约束)

    I - 动物狂想曲 HDU - 6252 雷格西桑和路易桑是好朋友,在同一家公司工作.他们总是一起乘地铁去上班.他们的路线上有N个地铁站,编号从1到N.1站是他们的家,N站是公司. 有一天,雷格西桑起 ...

  4. hdu 4598 差分约束

    思路:首先就是判断是否有奇环,若存在奇环,则输出No. 然后用差分约束找是否符合条件. 对于e(i,j)属于E,并且假设顶点v[i]为正数,那么v[i]-v[j]>=T--->v[j]-v ...

  5. hdu 3666(差分约束,手动栈解决超时问题)

    THE MATRIX PROBLEM Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  6. hdu 1364(差分约束)

    King Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12056   Accepted: 4397 Description ...

  7. hdu 3440 差分约束

    看完题目第一遍,感觉很简单.当写完程序跑测试用例的时候,发现第二个总是过不了,然后好好研究了一下测试用例,才知道原来不是程序有问题,而是我的建图方式错了.对于这些无序的点,如果高的在右边,不等式是di ...

  8. hdu 3440(差分约束好题)

    House Man Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  9. hdu 1534 Schedule Problem (差分约束)

    Schedule Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

随机推荐

  1. mysql初识(5)

    将mysql数据库内的表导出为execel格式文件: 方法1:mysql命令:select * into outfile '/tmp/test.xls' from table_name;(需要注意的是 ...

  2. 【Python】python中的__dict__,__getattr__,__setattr__

    Python class 通过内置成员__dict__ 存储成员信息(字典) 首先用一个简单的例子看一下__dict__ 的用法 class A(): def __init__(self,ax,bx) ...

  3. 重写page的OnInit(学习中总结的)

    在写b/s框架的系统的时候,我们会发现,我们经常会在不同的网页中验证Session是否存在,,而我这里没有用Session,用的是MemCache技术,其实它就是键值对. 只不过将Memcache中的 ...

  4. 对TDD的实践感悟

    文章:我的TDD实践:可测试性驱动开发(上) 文章表达的思想是,达到一个目的并非只有一种套路,作者用写代码时,时刻考虑代码的可测试性,来推动项目的合理开发.

  5. React & styled component

    React & styled component https://www.styled-components.com/#your-first-styled-component tagged t ...

  6. Citrix Netscaler负载均衡算法

    Citrix Netscaler负载均衡算法 http://blog.51cto.com/caojin/1926308 众所周知,作为新一代应用交付产品的Citrix Netscaler具有业内领先的 ...

  7. [Leetcode] Convert sorted list to binary search tree 将排好的链表转成二叉搜索树

    ---恢复内容开始--- Given a singly linked list where elements are sorted in ascending order, convert it to ...

  8. The 13th Zhejiang Provincial Collegiate Programming Contest - I

    People Counting Time Limit: 2 Seconds      Memory Limit: 65536 KB In a BG (dinner gathering) for ZJU ...

  9. HDU3488:Tour(KM算法)

    Tour Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submis ...

  10. linux 端口号、进程id、杀进程、查询tcp的连接(各种状态的)

    sudo netstat -antupkill -s 9 50713netstat -n | grep 61616netstat -n | awk '/^tcp/ {++S[$NF]} END {fo ...