Leetcode:Divide Two Integers分析和实现
题目要求我们用一个32位整数整除另外一个整数,但是不允许我们使用除法,乘法和取模运算。
有趣的问题,下面说一下我的思路:
首先,先给出两个正整数除法运算的过程。假设a为被除数,而b为除数。在计算机中无符号整数除法div可以用下面的数学公式来表示:
即计算机除法中的a/b实际上是数学意义上a/b代表的有理数向下取整值。可以换一个方法来等价表示上面公式:
因此我们只需要能找到一个值c,满足下面条件即可:
但是我们不能从1到正无穷枚举c,因为如果a足够大且b足够小,那么c的值可能要上亿,上亿次的枚举消耗的时间非常可怕。但是我们不能使用乘法又该如何快速增大枚举值呢。这源于一个思路,v[0]=1,v[1]=v[0]+v[0],...,v[n]=v[n-1]+v[n-1]。发现了吗,v[i]=2^i,而32位整数绝对不会超过v[32],因此我们可以快速的利用v数组快速逼近c。
实际做法如下:
v and u are arrays with size 32
v[0] = 1, u[0] = b
limit = 0
for(; u[limit] < a; limit = limit + 1)
u[limit + 1] = u[limit ] + u[limit ]
v[limit + 1] = v[limit] + v[limit]
这样我们就得到一个数组u,并且保证了u[0], ..., u[limit - 1] < a,且u[limit] >= a,实际上u[i] = b * 2^i。但是我们又该如何能够借助这样一个数组u计算出最终的c?
由于每个整数在计算机中都是由二进制表示而成,因此c必然等于2^i1+2^i2+...+2^in,其中i1,...in互不相同并按增序排序。因此我们所要找的实际上是这样一组i1,i2,...,in。由于2^n=1+2^0+2^1+2^2+...+2^(n-1),因此我们能得知2^in>2^i1+2^i2+...+2^in-1,换句话说有2^in<=c<2^(in+1),等价的形式为u[in]=b*2^in<=b*c=a<b*2^(in+1)=u[in+1]。到了这一步我们就知道如何快速地决定in,而对于in-1的计算,可以通过u[in-1]=b*2^in-1<=b*(c-2^in)=a-u[in]<b*2^(in-1+1)=u[in-1+1]得出,推理过程如上。这样不断地计算下去,我们就可以将i1,i2,...,in全部计算出来。
用代码展示上面的结论:
r = a, c = 0
for(i = limit; r >= b; i--)
if(u[i] <= r)
r = r - u[i]
c = c + v[i]
综合上面我们已经得到了计算两个正整数的方式。上面这个算法的时间复杂度与空间复杂度均为常数O(1),因为不存在与输入相关联的冗余循环。
对于a,b均为负数的除法,有a/b=(-a)/(-b),因此可以直接用上述正整数除法的运算方式。对于a为负数的运算。计算机中对于带一个负数除法ndiv的定义如下:
但是我们不希望为带负数的重新定义一个新的算法,故我们要使用下面公式提供的计算c的方法:
故到了这里问题全面解决。当然这只是理论上的,实践上还会存在数值超出32位整数表示范围的情况,这需要读者自己对特殊情况进行处理。
最后提供一下AC代码,主要是需要对Integer.MIN_VALUE和越界做处理:
package cn.dalt.leetcode; /** * Created by dalt on 2017/6/21. */ public class DivideTwoIntegers { public int divide(int dividend, int divisor) { if (divisor == 0) { throw new ArithmeticException(); } if (divisor == Integer.MIN_VALUE) { return dividend == Integer.MIN_VALUE ? 1 : 0; } if (dividend == Integer.MIN_VALUE) { if (divisor == -1) { return Integer.MAX_VALUE; } if (divisor == 1) { return Integer.MIN_VALUE; } if (divisor < 0) { return divide(dividend - divisor, divisor) + 1; } return divide(dividend + divisor, divisor) - 1; } if (divisor < 0) { return divide(-dividend, -divisor); } if (dividend < 0) { return -divide(-dividend, divisor); } return div(dividend, divisor); } /** * Calculate floor(a/b) * * @param a a positive number * @param b a positive number * @return floor(a/b) */ public int div(int a, int b) { int[] v = new int[32]; int[] u = new int[32]; v[0] = 1; u[0] = b; int limit = 0; for (; u[limit] <= a && u[limit] > 0; limit++) { u[limit + 1] = u[limit] + u[limit]; v[limit + 1] = v[limit] + v[limit]; } int c = 0; int r = a; for (limit--; r >= b; limit--) { if (r >= u[limit]) { c += v[limit]; r -= u[limit]; } } return c; } }
Leetcode:Divide Two Integers分析和实现的更多相关文章
- [LeetCode] Divide Two Integers 两数相除
Divide two integers without using multiplication, division and mod operator. If it is overflow, retu ...
- LeetCode: Divide Two Integers 解题报告
Divide Two Integers Divide two integers without using multiplication, division and mod operator. SOL ...
- Leetcode Divide Two Integers
Divide two integers without using multiplication, division and mod operator. 不用乘.除.求余操作,返回两整数相除的结果,结 ...
- [LeetCode] Divide Two Integers( bit + 二分法 )
Divide two integers without using multiplication, division and mod operator. 常常出现大的负数,无法用abs()转换成正数的 ...
- leetcode Divide Two Integers python
class Solution(object): def divide(self, dividend, divisor): """ :type dividend: int ...
- leetcode面试准备:Divide Two Integers
leetcode面试准备:Divide Two Integers 1 题目 Divide two integers without using multiplication, division and ...
- [Leetcode][Python]29: Divide Two Integers
# -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 29: Divide Two Integershttps://oj.leetc ...
- leetcode第28题--Divide Two Integers
Divide two integers without using multiplication, division and mod operator. 分析:题目意思很容易理解,就是不用乘除法和模运 ...
- 【一天一道LeetCode】#29. Divide Two Integers
一天一道LeetCode系列 (一)题目 Divide two integers without using multiplication, division and mod operator. If ...
随机推荐
- js 变量与属性的区别
在全局作用域下, 表明全局变量x,属性b,都是window的属性,因为在全局作用域下,浏览器默认会创建一个window对象. 说明变量x不能通过delete进行删除,但是属性y可以通过delete进行 ...
- Set Matrix Zeros
Question: Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in pla ...
- HDU - 6180:Schedule(简单贪心)
There are N schedules, the i-th schedule has start time s i si and end time e i ei (1 <= i < ...
- 1076. Wifi密码 (15)
下面是微博上流传的一张照片:“各位亲爱的同学们,鉴于大家有时需要使用wifi,又怕耽误亲们的学习,现将wifi密码设置为下列数学题答案:A-1:B-2:C-3:D-4:请同学们自己作答,每两日一换.谢 ...
- C# 操作自定义config文件
示例文件:DB.config 1.读取 //先实例化一个ExeConfigurationFileMap对象,把物理地址赋值到它的 ExeConfigFilename 属性中: ExeConfigura ...
- vue指令总结
new Vue({ el: "#box", // element(元素) 当前作用域 data:{ msg:" ...
- EMMC架构
现在EMMC盛行,分析总结还是很有必要的.以下以全志a64为实例切入主题. 这里a64有三个sdc0~2,硬件上sdc2是连接EMMC,这里只分析sdc2的代码. 初始化的代码在linux-3.10/ ...
- BZOJ3790:神奇项链
浅谈\(Manacher\):https://www.cnblogs.com/AKMer/p/10431603.html 题目传送门:https://lydsy.com/JudgeOnline/pro ...
- linux(centos7) 安装nginx
linux(centos7) 安装nginx 1.14(stable) 版本 Nginx配置文件常见结构的从外到内依次是「http」「server」「location」等等,缺省的继承关系是从外到内, ...
- Spring security 浅谈用户验证机制
step1:首先ApplicationUserDetailsService需要实现UserDetailsService接口(在 org.springframework.security.core.us ...