别人写的讲得挺好的博客

洲阁筛,一种快速求积性函数前缀和的算法

求$\sum\limits_{i=1}^nF(i)$,其中$F(x)$是积性函数,并且$F(p^c)$是关于$p$的低阶多项式

我们把$1\cdots n$的所有数按是否有$\gt\sqrt n$的质因子分类,那么

$\sum\limits_{i=1}^nF(i)=\sum\limits_{\substack{1\leq i\leq n\\i\,没有\,\gt\sqrt n\,的质因子}}F(i)\left(1+\sum\limits_{\substack{\sqrt n\lt j\leq\left\lfloor\frac ni\right\rfloor\\j\,是质数}}\right)$

当$i\geq\sqrt n$时括号内为$1$,所以我们需要计算两部分

1.对$\forall1\leq i\lt\sqrt n$,计算$\sum\limits_{\substack{\sqrt n\lt j\leq\left\lfloor\frac ni\right\rfloor\\j\,是质数}}F(j)$

2.$\sum\limits_{\substack{\sqrt n\leq i\leq n\\i\,没有\,\gt\sqrt n\,的质因子}}F(i)$

因为$F(p)$是关于$p$的低阶多项式,所以问题转化为求一定范围内的质数幂和

设$g_k(i,j)$表示$[1,j]$中与前$i$个质数互质的数的$k$次幂和,$\leq\sqrt n$的质数有$m$个,我们要求的是$g_k\left(m,\left\lfloor\frac ni\right\rfloor\right)-1$

边界:$g_k(0,i)=\sum\limits_{j=1}^ij^k$,因为$F(p)$是关于$p$的低次多项式,这意味着$k$比较小,那么此式可以快速计算

转移:$g_k(i,j)=g_k(i-1,j)-p_i^kg_k\left(i-1,\left\lfloor\frac j{p_i}\right\rfloor\right)$,减去的是最小质因子$=p_i$的数

因为$j=\left\lfloor\frac n{p_\cdots}\right\rfloor$,所以它的取值只有$O(\sqrt n)$种

当$p_i\gt\left\lfloor\frac j{p_i}\right\rfloor$即$p_i^2\gt j$时,$g_k(i,j)=g_k(i-1,j)-p_i^k$,所以对于一个$j$,我们从小到大枚举$i$,一旦遇到一个$i_0$满足此式,我们以后都不用转移它了,要用到它在$i_1$处的值时减去$\sum\limits_{l=i_0}^{i_1}p_l^k$即可

设$f(i,j)$表示$[1,j]$中仅由$\leq\sqrt n$的后$i$个质数组成的数的$F(x)$之和,我们要求的是$f(m,n)-f(m,\sqrt n-1)$

边界:$f(0,i)=1$

转移:$f(i,j)=f(i-1,j)+\sum\limits_{c\geq1}F(p_i^c)f\left(i-1,\left\lfloor\frac j{p_i^c}\right\rfloor\right)$,加上的是最小质因子$=p_i$的数

同样地,$j$的取值只有$O(\sqrt n)$种

当$p_i^2\gt j$时,$f(i,j)=f(i-1,j)+F(p_i)$,所以我们从大到小枚举质数$p_i$,满足此式时不转移,要用到它的值时加上$[p_i,\min(j,\sqrt n)]$中的质数的$F(p)$即可

总时间复杂度$O\left(\frac{n^{\frac34}}{\log n}\right)$,作者水平不足,证明从略

现在来看spoj上的DIVCNT3,这里$\sigma_0\left(\left(p^c\right)^3\right)=3c+1$,是常数,所以1只用筛质数个数,初始化也很好处理

我的写法可能有一些问题,跑起来挺慢的...

#include<stdio.h>
typedef long long ll;
const ll T=316500,maxn=635000;
ll pr[T+10],md[T+10],c[T+10],d3[T+10],s3[T+10];
bool np[T+10];
void sieve(){
	ll i,j,M;
	M=0;
	md[1]=1;
	c[1]=1;
	d3[1]=1;
	for(i=2;i<=T;i++){
		if(!np[i]){
			M++;
			pr[M]=i;
			md[i]=i;
			c[i]=1;
			d3[i]=4;
		}
		for(j=1;j<=M&&i*pr[j]<=T;j++){
			np[i*pr[j]]=1;
			if(i%pr[j]==0){
				md[i*pr[j]]=md[i]*pr[j];
				c[i*pr[j]]=c[i]+1;
				d3[i*pr[j]]=d3[i/md[i]]*((c[i]+1)*3+1);
				break;
			}
			md[i*pr[j]]=pr[j];
			c[i*pr[j]]=1;
			d3[i*pr[j]]=d3[i]*4;
		}
	}
	for(i=1;i<=T;i++)s3[i]=s3[i-1]+d3[i];
}
const ll mod=1000007;
struct map{
	ll h[mod],nex[maxn],to[maxn],id[maxn],v[maxn],M;
	void clear(ll n){
		M=0;
		for(ll i=1;i<=n;i=n/(n/i)+1)h[n/i%mod]=0;
	}
	ll&operator[](ll x){
		for(ll i=h[x%mod];i;i=nex[i]){
			if(id[i]==x)return v[i];
		}
		M++;
		id[M]=x;
		nex[M]=h[x%mod];
		h[x%mod]=M;
		return v[M];
	}
}h;
ll bl[maxn],g[maxn],i0[maxn],n,m,C;
void getg(){
	ll i,j,k;
	C=0;
	h.clear(n);
	for(i=1;i<=n;i=n/(n/i)+1){
		C++;
		bl[C]=n/i;
		g[C]=n/i;
		i0[C]=0;
		h[n/i]=C;
	}
	for(i=1;i<=m;i++){
		for(j=1;j<=C&&pr[i]*pr[i]<=bl[j];j++){
			k=h[bl[j]/pr[i]];
			g[j]-=g[k]-(i-1-i0[k]);
			i0[j]=i;
		}
	}
	for(i=1;i<=C&&pr[m]<=bl[i];i++)g[i]-=m-i0[i];
}
ll f[maxn],mp[maxn];
bool us[maxn];
ll ck(ll a,ll b){return a>b?a-b:0;}
void getf(){
	ll i,j,c,t,p;
	mp[0]=m;
	for(i=1;i<=C;i++){
		us[i]=0;
		f[i]=1;
		for(j=mp[i-1];pr[j]>bl[i];j--);
		mp[i]=j;
	}
	for(i=m;i>0;i--){
		for(j=1;j<=C&&pr[i]*pr[i]<=bl[j];j++){
			if(!us[j]){
				f[j]+=ck(mp[j],i)*4;
				us[j]=1;
			}
			for(c=1,t=pr[i];t<=bl[j];c++,t*=pr[i]){
				p=h[bl[j]/t];
				f[j]+=(f[p]+(us[p]?0:ck(mp[p],i)*4))*(3*c+1);
			}
		}
	}
	for(i=1;i<=C;i++){
		if(!us[i])f[i]+=mp[i]*4;
	}
}
void work(){
	ll i,sq,ans;
	scanf("%lld",&n);
	if(n<=T){
		printf("%lld\n",s3[n]);
		return;
	}
	for(m=1;pr[m]*pr[m]<=n;m++);
	m--;
	getg();
	getf();
	for(sq=1;sq*sq<n;sq++);
	sq--;
	ans=f[1]-f[h[sq]];
	for(i=1;i<=sq;i++)ans+=d3[i]*((g[h[n/i]]-1)*4+1);
	printf("%lld\n",ans);
}
int main(){
	sieve();
	ll cas;
	scanf("%lld",&cas);
	while(cas--)work();
}

DIVCNTK被卡常了,鈤

[SPOJ]DIVCNT3的更多相关文章

  1. 杜教筛进阶+洲阁筛讲解+SPOJ divcnt3

    Part 1:杜教筛进阶在了解了杜教筛基本应用,如$\sum_{i=1}^n\varphi(i)$的求法后,我们看一些杜教筛较难的应用.求$\sum_{i=1}^n\varphi(i)*i$考虑把它与 ...

  2. SPOJ:[DIVCNT3]Counting Divisors

    题目大意:求1~N的每个数因子数的立方和. 题解:由于N过大,我们不能直接通过线性筛求解.我们可以采用洲阁筛. 洲阁筛的式子可以写成: 对于F(1~√n),可以直接线性筛求解. 对于,我们进行以下DP ...

  3. SPOJ divcntk(min25筛)

    题意 \(\sigma_0(i)\) 表示 \(i\) 的约数个数 求 \[ S_k(n)=\sum_{i=1}^n\sigma_0(i^k)\pmod {2^{64}} \] 共 \(T\) 组数据 ...

  4. BZOJ 2588: Spoj 10628. Count on a tree [树上主席树]

    2588: Spoj 10628. Count on a tree Time Limit: 12 Sec  Memory Limit: 128 MBSubmit: 5217  Solved: 1233 ...

  5. SPOJ DQUERY D-query(主席树)

    题目 Source http://www.spoj.com/problems/DQUERY/en/ Description Given a sequence of n numbers a1, a2, ...

  6. SPOJ GSS3 Can you answer these queries III[线段树]

    SPOJ - GSS3 Can you answer these queries III Description You are given a sequence A of N (N <= 50 ...

  7. 【填坑向】spoj COT/bzoj2588 Count on a tree

    这题是学主席树的时候就想写的,,, 但是当时没写(懒) 现在来填坑 = =日常调半天lca(考虑以后背板) 主席树还是蛮好写的,但是代码出现重复,不太好,导致调试的时候心里没底(虽然事实证明主席树部分 ...

  8. SPOJ bsubstr

    题目大意:给你一个长度为n的字符串,求出所有不同长度的字符串出现的最大次数. n<=250000 如:abaaa 输出: 4 2 1 1 1 spoj上的时限卡的太严,必须使用O(N)的算法那才 ...

  9. 【SPOJ 7258】Lexicographical Substring Search

    http://www.spoj.com/problems/SUBLEX/ 好难啊. 建出后缀自动机,然后在后缀自动机的每个状态上记录通过这个状态能走到的不同子串的数量.该状态能走到的所有状态的f值的和 ...

随机推荐

  1. CodeIgniter自带的数据库类使用介绍

    在 CodeIgniter 中,使用数据库是非常频繁的事情.你可以使用框架自带的数据库类,就能便捷地进行数据库操作. 初始化数据库类 依据你的数据库配置载入并初始化数据库类: view source ...

  2. JSR330的注解和spring的原生注解的比较

    下面的图比较了JSR330和spring的原生注解.其实在大多数场合下他们之间可以互相代替.有可能spring写注解时参考了JSR330的注解:

  3. #error#学习方法,如何避免初始化错误

    #error#学习方法,如何避免初始化错误.错误来自:本博客的另一篇文章Demo示例程序源代码: ,01-导航实例-QQ空间.xcodeproj - CYLLoginViewController.mD ...

  4. The service base of EF I am using

    using CapMon.Data; using System; using System.Collections.Generic; using System.Linq; using System.T ...

  5. 如何使用SDK在Ubuntu设备(包括仿真器和桌面)上运用应用程序

    简介 有三种运行通过SDK创建的应用程序的方式:在桌面上,在联网的Ubuntu设备上,以及在仿真器中.这些方式为互补性方式,因为各有优缺点.您首先将了解如何管理SDK的设备类型,以及哪一个类型用于测试 ...

  6. Python学习笔记 - day7 - 类

    类 面向对象最重要的概念就是类(Class)和实例(Instance),比如球类,而实例是根据类创建出来的一个个具体的“对象”,每个对象都拥有相同的方法,但各自的数据可能不同.在Python中,定义类 ...

  7. csrf_execmp

    参考;https://www.cnblogs.com/zhaof/p/6281482.html 全局: 中间件 django.middleware.csrf.CsrfViewMiddleware 局部 ...

  8. Django-views,用户认证,login_requierd()

    分别是认证,登入,注销的功能 authenticated():验证是否登录 user = authenticate(username='someone',password='somepassword' ...

  9. 在opensuse 中安装视频解码器

    最近由于需要32位的linux系统使用,很多版本的linux都不再发布32的安装镜像了,有一些又不是很熟悉,我熟悉的manjaro发布的32镜像又不是kde桌面,最后发现opensuse的滚动版本,即 ...

  10. 如何在本机搭建SVN服务器【转】

    转自:http://www.cnblogs.com/loveclumsybaby/archive/2012/08/21/2649353.html 目的:在没有正式的SVN服务器的情况下,完成代码的本地 ...