nlogn求出最长上升子序列长度。

对每次询问,贪心地回答。设输入为x。当前数a[i]可能成为答案序列中的第k个,则若 f[i]>=x-k && a[i]>ans[k-1] 即可。

f[i]表示以a[i]开头的最长上升子序列长度。

但这个东西难以统计。so 我们将原序列反序,求f[i] 表示以 a[i]为结尾的最长下降子序列长度即可。最后再将f、a reverse一下。

 #include<cstdio>
#include<algorithm>
using namespace std;
int a[],n,m,en=,len,last;
int b[];//b[i]:将a翻转后,长度为i的最长下降子序列的末尾
int c[];//c[i]:将a翻转后,以a[i]开头的最长下降子序列的长度
bool cmp(const int &a,const int &b){return a>b;}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d",&a[n-i+]);
scanf("%d",&m);
b[]=a[]; c[]=;
for(int i=;i<=n;i++)
{
int *p=lower_bound(b+,b+en+,a[i],cmp);
if(!(*p)) ++en;
*p=a[i];
c[i]=p-b;
}
for(int i=;i<=(n>>);i++) swap(c[i],c[n-i+]),swap(a[i],a[n-i+]);
for(int i=;i<=m;i++)
{
scanf("%d",&len);
if(len>en)
{
puts("Impossible");
continue;
} last=;
for(int j=;j<=n;++j)
if(c[j]>=len&&a[j]>last)
{
printf("%d",last=a[j]);
if(!(--len))
{
puts("");
break;
} putchar(' ');
}
}
return ;
}

【动态规划】【最长上升子序列】【贪心】bzoj1046 [HAOI2007]上升序列的更多相关文章

  1. 动态规划——最长上升子序列LIS及模板

    LIS定义 一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的.对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子序列(ai1 ...

  2. 动态规划———最长公共子序列(LCS)

    最长公共子序列+sdutoj2080改编: http://acm.sdut.edu.cn/onlinejudge2/index.php/Home/Contest/contestproblem/cid/ ...

  3. 动态规划-最长上升子序列(LIS)

    时间复杂度为〇(nlogn)的算法,下面就来看看. 我们再举一个例子:有以下序列A[]=3 1 2 6 4 5 10 7,求LIS长度. 我们定义一个B[i]来储存可能的排序序列,len为LIS长度. ...

  4. 动态规划----最长递增子序列问题(LIS)

    题目: 输出最长递增子序列的长度,如输入 4 2 3 1 5 6,输出 4 (因为 2 3 5 6组成了最长递增子序列). 暴力破解法:这种方法很简单,两层for循环搞定,时间复杂度是O(N2). 动 ...

  5. 动态规划 - 最长公共子序列(LCS)

    最长公共子序列也是动态规划中的一个经典问题. 有两个字符串 S1 和 S2,求一个最长公共子串,即求字符串 S3,它同时为 S1 和 S2 的子串,且要求它的长度最长,并确定这个长度.这个问题被我们称 ...

  6. 动态规划 - 最长递增子序列(LIS)

    最长递增子序列是动态规划中经典的问题,详细如下: 在一个已知的序列{a1,a2,...,an}中,取出若干数组组成新的序列{ai1,ai2,...,aim},其中下标i1,i2,...,im保持递增, ...

  7. nlog(n)解动态规划--最长上升子序列(Longest increasing subsequence)

    最长上升子序列LIS问题属于动态规划的初级问题,用纯动态规划的方法来求解的时间复杂度是O(n^2).但是如果加上二叉搜索的方法,那么时间复杂度可以降到nlog(n).  具体分析参考:http://b ...

  8. 算法导论-动态规划(最长公共子序列问题LCS)-C++实现

    首先定义一个给定序列的子序列,就是将给定序列中零个或多个元素去掉之后得到的结果,其形式化定义如下:给定一个序列X = <x1,x2 ,..., xm>,另一个序列Z =<z1,z2  ...

  9. 动态规划---最长公共子序列 hdu1159

    hdu1159 题目要求两个字符串最长公共子序列, 状态转换方程   f[i][j]=f[i-1][j-1]+1; a[i]=b[j]时 f[i][j]=MAX{f[i-1][j],f[i][j-1] ...

随机推荐

  1. hive 动态分区(Dynamic Partition)异常处理

    Changing Hive Dynamic Partition Limits Symptoms: Hive enforces limits on the number of dynamic parti ...

  2. JS中二维数组的声明

    var myarr=new Array(); //先声明一维 for(var i=0;i<2;i++){ //一维长度为2 myarr[i]=new Array(); //再声明二维 for(v ...

  3. VR行业纷纷倒闭:有硬件没内容

    从去年年底开始,VR就成为了一个流行词汇,不仅是巨头公司砸钱布局,众多创业公司也纷纷投入其中.但是,一窝蜂拥入的企业基本都没有成熟的商业模式和赢利模式,只能靠融资供血.在资本寒冬中,大部分的VR企业开 ...

  4. WebComponents001

    Sample1: ShadowDom 隔离style,替换显示内容 <button>Hello, world!</button> <script> var host ...

  5. BestCoder Round #39 解题报告

    现场只做出前三题w 不过不管怎样这既是第一次认真打BC 又是第一次体验用在线编译器调代码 订正最后一题花了今天一整个下午(呜呜 收获还是比较大的^_^ Delete wld有n个数(a1,a2,... ...

  6. NGINX: 限制连接的实践 (Defense DDOS)

    参考: [ nginx防止DDOS攻击配置 ] 关于限制用户连接,Nginx 提供的模块: [ ngx_http_limit_req_module ] [ ngx_http_limit_conn_mo ...

  7. 下拉列表 JComboBox 的使用

    下拉列表(JComboBox)通常显示一个可选条目,允许用户在一个下拉列表中选择不同条目,用户也可以在文本区内输入选择项. package first; import java.awt.FlowLay ...

  8. 哈希Hash在字符串中的应用_C++

    本文含有原创题,涉及版权利益问题,严禁转载,违者追究法律责任 哈希大家都会用撒,字符串显然都会写撒,那么哈希离散化字符串不就懂了?!(XXX的神逻辑,其实原文是:树都晓得吧,数组显然都会开呀,那么恭喜 ...

  9. LeetCode 5:Given an input string, reverse the string word by word.

    problem: Given an input string, reverse the string word by word. For example: Given s = "the sk ...

  10. 基于x64的处理器意思

    基于x64的处理器意思是CPU的架构是X64的,也是64位的CPU. 基本简介: "x86-64",有时会简称为"x64",是64位微处理器架构及其相应指令集的 ...