【数论】【欧拉函数】bzoj2190 [SDOI2008]仪仗队

由图可知,一个人无法被看到时,当且仅当有 人与原点 的斜率与他相同,且在他之前。
∴一个人可以被看到,设其斜率为y/x,当且仅当y/x不可再约分,即gcd(x,y)=1。
考虑将图按对角线划分开,两部分对称,
对其中的下半部分来说,枚举x,其所对应的y值(y<x)有几个与它互质的,则其对答案的贡献就是几。
这个值显然就是phi(x),所以枚举phi(x),将它们加起来即可。
#include<cstdio>
using namespace std;
int n,phi[];
//bool get_phi(const int &x)//求单个数的phi
//{
// int ans=n;
// for(int i=2;i*i<=x;i++)
// if(n%i==0)
// {
// ans=ans/i*(i-1);
// while(n%i==0) n%=i;
// }
// if(n>1) ans=ans/n*(n-1);
//}
void phi_table()
{
phi[]=;//规定phi(1)=1;
for(int i=;i<=n;i++)
if(!phi[i])//若i是质数(类似筛法的思想)
for(int j=i;j<=n;j+=i)//i一定是j的质因数
{
if(!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
}
int main()
{
scanf("%d",&n);
if(n==) printf("3\n");
else if(n==) puts("");
else
{
long long ans=;
phi_table();
for(int i=;i<n;i++) ans+=(long long)phi[i];
printf("%lld\n",ans<<|);
}
return ;
}
【数论】【欧拉函数】bzoj2190 [SDOI2008]仪仗队的更多相关文章
- 【数论·欧拉函数】SDOI2008仪仗队
题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如右图 ...
- 数论-欧拉函数-LightOJ - 1370
我是知道φ(n)=n-1,n为质数 的,然后给的样例在纸上一算,嗯,好像是找往上最近的质数就行了,而且有些合数的欧拉函数值还会比比它小一点的质数的欧拉函数值要小,所以坚定了往上找最近的质数的决心—— ...
- 【poj 3090】Visible Lattice Points(数论--欧拉函数 找规律求前缀和)
题意:问从(0,0)到(x,y)(0≤x, y≤N)的线段没有与其他整数点相交的点数. 解法:只有 gcd(x,y)=1 时才满足条件,问 N 以前所有的合法点的和,就发现和上一题-- [poj 24 ...
- 【bzoj2190】: [SDOI2008]仪仗队 数论-欧拉函数
[bzoj2190]: [SDOI2008]仪仗队 在第i行当且仅当gcd(i,j)=1 可以被看到 欧拉函数求和 没了 /* http://www.cnblogs.com/karl07/ */ #i ...
- 【bzoj2190】[SDOI2008]仪仗队 数论 欧拉函数 筛法
http://www.lydsy.com/JudgeOnline/problem.php?id=2190 裸欧拉函数,先不计算对角线(a,a)的一列,然后算出1到n-1的所有欧拉函数相加*2,再加 ...
- BZOJ-2190 仪仗队 数论+欧拉函数(线性筛)
今天zky学长讲数论,上午水,舒爽的不行..后来下午直接while(true){懵逼:}死循全程懵逼....(可怕)Thinking Bear. 2190: [SDOI2008]仪仗队 Time Li ...
- Codeforces_776E: The Holmes Children (数论 欧拉函数)
题目链接 先看题目中给的函数f(n)和g(n) 对于f(n),若自然数对(x,y)满足 x+y=n,且gcd(x,y)=1,则这样的数对对数为f(n) 证明f(n)=phi(n) 设有命题 对任意自然 ...
- Codeforces 776E: The Holmes Children (数论 欧拉函数)
题目链接 先看题目中给的函数f(n)和g(n) 对于f(n),若自然数对(x,y)满足 x+y=n,且gcd(x,y)=1,则这样的数对对数为f(n) 证明f(n)=phi(n) 设有命题 对任意自然 ...
- 数论 - 欧拉函数模板题 --- poj 2407 : Relatives
Relatives Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11372 Accepted: 5544 Descri ...
- 数论 - 欧拉函数的运用 --- poj 3090 : Visible Lattice Points
Visible Lattice Points Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5636 Accepted: ...
随机推荐
- [codeforces/gym/100431/E]KMP关于border的理解
题目链接:http://codeforces.com/gym/100431/ 考虑到对于一个串β,能cover它的最短的α必然是它的border的某个前缀,或者是这个β本身. 所谓border,就是n ...
- java实现ssm框架的crud
上一篇博客写了通过表名获取数据库表结构的demo,现在我以此为基础实现了一个简单的通过数据库表结构生成对应的实体,通过读取mapper接口文件.mapping映射文件. service映射文件模板,替 ...
- java属性为什么没多态,而是方法多态
定义 java多肽的特性:方法具有多态性,属性却没有. 准备 基类: 子类: 测试类: 结果: 分析如下 父类 a=new 子类,实际对象时子类.由于向上转型,我们可以用父类在编译期间代替子类,使得编 ...
- mybatis的一些特殊符号标识(大于,小于,等于,不等于)
特殊字符 替代符号(红色基本为常用的) & & < < > > ...
- HDU1025---(LIS 最长上升子序列 的应用)
分析: n行 每行包含两个整数p r;意思是p从到r 不能有交叉的路 p刚好从1->n, 可看做下标,到的地方看做值 就转化为了最长上升子序列的问题 此题难点,怎么将其转化为LIS问题 #inc ...
- TCP(一)
TCP的特点:三次握手.四次挥手.可靠连接.丢包重传.所有的关键词都围绕着可靠传输. 实现可靠传输的核心机制:seq+ack.通过ack判断是否有丢包,是否需要重传. 三次握手 1)初始状态:clie ...
- 【 Keepalived 】Nginx or Http 主-主模式
上一篇:[ Keepalived ]Nginx or Http 主-备模式 在此基础上进行修改并实现 Keepalived主-主模式 首先,需要理解的是:主-备模式是一个VIP在工作,主-主模式则需要 ...
- Android的简单应用(一)——PreferenceFragment实现应用的设置
今天主要讲解怎么使用PreferenceFragment.PreferenceFragment它与默认的SharedPreferences文件相连接,不需要你再自己写代码去操作SharedPrefer ...
- python批量下载淘宝图片3
import urllib.request import os def url_open(url): req = urllib.request.Request(url) req.add_header( ...
- ros msg array
#include <stdio.h> #include <stdlib.h> #include "ros/ros.h" #include "std ...