标题:格子刷油漆

X国的一段古城墙的顶端可以看成 2*N个格子组成的矩形(如图1所示),现需要把这些格子刷上保护漆。

你可以从任意一个格子刷起,刷完一格,可以移动到和它相邻的格子(对角相邻也算数),但不能移动到较远的格子(因为油漆未干不能踩!)

比如:a d b c e f 就是合格的刷漆顺序。

c e f d a b 是另一种合适的方案。

当已知 N 时,求总的方案数。当N较大时,结果会迅速增大,请把结果对 1000000007 (十亿零七) 取模。

输入数据为一个正整数(不大于1000)

输出数据为一个正整数。

例如:

用户输入:

2

程序应该输出:

24

再例如:

用户输入:

3

程序应该输出:

96

再例如:

用户输入:

22

程序应该输出:

359635897

资源约定:

峰值内存消耗 < 64M

CPU消耗  < 1000ms

请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。

所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。

注意: main函数需要返回0

注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。

注意: 所有依赖的函数必须明确地在源文件中 #include <xxx>, 不能通过工程设置而省略常用头文件。

提交时,注意选择所期望的编译器类型(千万不要混淆c和cpp)。

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<vector>
#include<cmath>
#define MOD 1000000007 const int maxn=1e5+5;
typedef long long ll;
using namespace std;
ll a[maxn],b[maxn]; int main()
{
int i,n;
scanf("%d",&n); b[1]=1;
for (i=2;i<=n;i++)
b[i]=(b[i-1]*2%MOD);
a[1]=1;a[2]=6;
for (i=3;i<=n;i++)
a[i]=(2*a[i-1]+b[i]+4*a[i-2])%MOD;
ll sum=4*a[n];
for (i=2;i<n;i++)
{
sum+=((8*b[n-i]*a[i-1])%MOD+(8*a[n-i]*b[i-1])%MOD)%MOD;
sum %= MOD;
}
if(n==1) sum=2 ;
printf("%lld\n",sum); return 0;
}

格子刷油漆(dp)-----------蓝桥备战系列的更多相关文章

  1. Java实现蓝桥杯历届试题格子刷油漆

    问题描述 X国的一段古城墙的顶端可以看成 2*N个格子组成的矩形(如下图所示),现需要把这些格子刷上保护漆. 你可以从任意一个格子刷起,刷完一格,可以移动到和它相邻的格子(对角相邻也算数),但不能移动 ...

  2. 算法笔记_185:历届试题 格子刷油漆(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 问题描述 X国的一段古城墙的顶端可以看成 2*N个格子组成的矩形(如下图所示),现需要把这些格子刷上保护漆. 你可以从任意一个格子刷起,刷完一格,可 ...

  3. 格子刷油漆【动态规划问题】—NYOJ 980

    个人博客页:https://www.scriptboy.cn/198.html 出处:蓝桥杯 题目描述: X国的一段古城墙的顶端可以看成 2*N个格子组成的矩形(如下图所示),现需要把这些格子刷上保护 ...

  4. [蓝桥杯]PREV-15.历届试题_格子刷油漆

    题目描述: 代码如下: #include <stdio.h> #include <stdlib.h> #include <string.h> #define MOD ...

  5. NYOJ 980 格子刷油漆 动态规划

    这道题目状态转移方程比较复杂,刚开始以为没这么多情况,看了好多大牛的博客再加上与同学讨论才看懂,写下心得. 因为起点不固定,所以我们一个一个来考虑,先从角上考虑,设三个数组来表示分别为D,A,Sum, ...

  6. A Simple Math Problem(矩阵快速幂)----------------------蓝桥备战系列

    Lele now is thinking about a simple function f(x).  If x < 10 f(x) = x.  If x >= 10 f(x) = a0 ...

  7. Just a Hook(线段树区间修改值)-------------蓝桥备战系列

    In the game of DotA, Pudge's meat hook is actually the most horrible thing for most of the heroes. T ...

  8. A Simple Problem with Integers(线段树区间更新复习,lazy数组的应用)-------------------蓝桥备战系列

    You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of op ...

  9. I Hate It(线段树区间最值,单点更新)-------------蓝桥备战系列

    很多学校流行一种比较的习惯.老师们很喜欢询问,从某某到某某当中,分数最高的是多少.  这让很多学生很反感.  不管你喜不喜欢,现在需要你做的是,就是按照老师的要求,写一个程序,模拟老师的询问.当然,老 ...

随机推荐

  1. WebFlux04 SpringBootWebFlux集成MongoDB之Windows版本、WebFlux实现CRUD、WebFlux实现JPA、参数校验

    1 下载并安装MongoDB 1.1 MongoDB官网 1.2 下载 solutions -> download center 1.3 安装 双击进入安装即可 1.3.1 安装时常见bug01 ...

  2. ubuntu安装软件包apt-get和dpkg方法

    1apt方法 安装软件 apt-get install softname1 softname2 softname3…… 卸载软件 apt-get remove softname1 softname2 ...

  3. linux下mariadb的下载与卸载

    Linux下mariadb的安装 使用阿里云的mariadb yum install mariadb-server mariadb -y 启动mariadb数据库 systemctl start/st ...

  4. php无限级分类

    使用递归方法,遍历子类,对数据进行重新排序,使用level进行无限级分类 /** * 功能:无限级分类 * 参数:$data 类别查询结果集 * 返回值:$arr 排序后的数组 */ public f ...

  5. URAL 1141. RSA Attack(欧拉定理+扩展欧几里得+快速幂模)

    题目链接 题意 : 给你n,e,c,并且知道me ≡ c (mod n),而且n = p*q,pq都为素数. 思路 : 这道题的确与题目名字很相符,是个RSA算法,目前地球上最重要的加密算法.RSA算 ...

  6. MongoDB整理笔记の性能监控

    方法一:Mongostat 此工具可以快速查看某组运行中的mongodb实例的统计信息,用法如下: [root@localhost bin]# ./mongostat insert query upd ...

  7. MongoDB整理笔记の安全访问

    MongoDB安全访问将从以下三个方面得到控制!   1.绑定IP内网地址访问MongoDB服务     2.设置监听端口     3.使用用户名和密码 绑定IP内网地址访问MongoDB服务 Mon ...

  8. Python中多使用迭代器

    英文原文出处:Use More Iterators 本文介绍将代码转换为使用迭代器的原因和实用技巧. 我最喜欢的Python语言的特色之一是生成器,它们是非常有用的,然而当阅读开源代码时,我很少遇到它 ...

  9. xmlreader与xmlwriter里的几个坑与解决方案

    加载超过100M的xml文件时(可能不是很常见),XmlDocument这种全部加载到内存里的模式就有点不友好了,耗时长.内存高. 这时用xmlreader就会有自行车换超跑的感觉,但其间遇到几个坑, ...

  10. 选择性的使用 serialize() 进行序列化

    serialize 非常方便的帮我们创建 URL 编码文本字符串 输出的字符串格式为 a=1&b=2&c=3  直接可用于Url传参 下面介绍一下选择性的序列化某些标签的使用方法 将 ...