题目:

Little C loves number «3» very much. He loves all things about it.

Now he has a positive integer nn. He wants to split nn into 3 positive integers a,b,ca,b,c, such that a+b+c=na+b+c=n and none of the 3 integers is a multiple of 3. Help him to find a solution.

Input

A single line containing one integer nn (3≤n≤10^9) — the integer Little C has.

Output

Print 3 positive integers a,b,c in a single line, such that a+b+c=n and none of them is a multiple of 3

It can be proved that there is at least one solution. If there are multiple solutions, print any of them.

Examples
input
3
output
1 1 1
input
233
output
77 77 79

题意分析:
这题是一个比较单纯的数学题目,给你一个数n,你需要把他分解成3个数,,并且这3个数都不是3的倍数。
这题我想的是根据数的素数分解原理,因为每个数都可以表示成素数相乘。所以对于N,
如果N的素因子中没有3,那么我们另外两个数只要相加等于3的倍数,那么就一定是满足的。
如果N的素因子中有3,那么此时,3应该还有个最大幂指数t,并且3的t次幂是N的一个因子。现在就是对3的t次幂的分解。假设 b = N/(3^t)
对3的t次幂分解成3个不被3整除的数还是比较简单的,因为是3的次幂,所以肯定可以分解成3个3的(t-1)次幂,那么 其中任意两个数减去1,另外一个数加上1就满足了,再把这3个数都乘以b即满足。 代码:
#include <iostream>
#include <cstdio>
using namespace std;
int main()
{
int N;
while(~scanf("%d", &N))
{
int cnt = 1;
if(N%3 != 0)  //N不是3的倍数
{
printf("%d %d %d\n", 1, 2, N-3);
continue;
}
while(N%3 == 0) //提取N中3的t次幂因子。
{
cnt*=3;
N/=3;
}
int a, b, c, d;
d = cnt/3;
if(d%3==0)
{
a = (d-1)*N;
b = (d+2)*N;
c = (d-1)*N;
}
else  //d==1
{
a = b = c = d*N;
}
printf("%d %d %d\n", a, b, c); }
return 0;
}

  

A. Little C Loves 3 I Codeforces Round #511 (Div. 2) 【数学】的更多相关文章

  1. Codeforces Round #511 (Div. 2)

    Codeforces Round #511 (Div. 2) #include <bits/stdc++.h> using namespace std; int n; int main() ...

  2. 2018.9.21 Codeforces Round #511(Div.2)

    只写了AB,甚至还WA了一次A题,暴露了蒟蒻的本质=.= 感觉考的时候有好多正确或和正解有关的思路,但是就想不出具体的解法或者想的不够深(长)(怕不是过于鶸) 话说CF的E题怎么都这么清奇=.= A. ...

  3. Codeforces Round #511 (Div. 2):C. Enlarge GCD(数学)

    C. Enlarge GCD 题目链接:https://codeforces.com/contest/1047/problem/C 题意: 给出n个数,然后你可以移除一些数.现在要求你移除最少的数,让 ...

  4. Codeforces Round #511 (Div. 2)-C - Enlarge GCD (素数筛)

    传送门:http://codeforces.com/contest/1047/problem/C 题意: 给定n个数,问最少要去掉几个数,使得剩下的数gcd 大于原来n个数的gcd值. 思路: 自己一 ...

  5. Codeforces Round #511 (Div. 1) C. Region Separation(dp + 数论)

    题意 一棵 \(n\) 个点的树,每个点有权值 \(a_i\) .你想砍树. 你可以砍任意次,每次你选择一些边断开,需要满足砍完后每个连通块的权值和是相等的.求有多少种砍树方案. \(n \le 10 ...

  6. Codeforces Round #511 Div.1 A Div.2 C

    嗯切一题走人很开心. gzy-50分比我还惨. 题意:有n个数,去掉尽量少的数使得剩下数的gcd变大. 首先把这n个数都除以gcd,就变成了去掉尽量少的数使得gcd不等于1. 可以枚举一个质数,然后统 ...

  7. C. Enlarge GCD Codeforces Round #511 (Div. 2)【数学】

    题目: Mr. F has nn positive integers, a1,a2,…,an. He thinks the greatest common divisor of these integ ...

  8. B. Cover Points Codeforces Round #511 (Div. 2)【数学】

    题目: There are nn points on the plane, (x1,y1),(x2,y2),…,(xn,yn)(x1,y1),(x2,y2),…,(xn,yn). You need t ...

  9. Codeforces Round #511 (Div. 2) C. Enlarge GCD

    题目链接 题目就是找每个数的最小素因子,然后递归除,本来没啥问题,结果今天又学习了个新坑点. 我交了题后,疯狂CE,我以为爆内存,结果是,我对全局数组赋值, 如果直接赋值,会直接在exe内产生内存,否 ...

随机推荐

  1. 一次shell中seq的处理

    一次shell中seq的处理 背景:用要shell 提取 文件中内容,文件名是用序列号如下生成,文件差不多有将近400多w个  如下:  www.ahlinux.com 原始脚本#! /bin/sh# ...

  2. CF 961G Partitions

    推不动式子 我们考虑每一个$w_i$对答案的贡献,因为题目中定义集合的价值为$W(S) = \left | S \right |\sum_{x \in S}w_x$,这个系数$\left | S \r ...

  3. Python3 Scrapy + Selenium + 阿布云爬取拉钩网学习笔记

    1 需求分析 想要一个能爬取拉钩网职位详情页的爬虫,来获取详情页内的公司名称.职位名称.薪资待遇.学历要求.岗位需求等信息.该爬虫能够通过配置搜索职位关键字和搜索城市来爬取不同城市的不同职位详情信息, ...

  4. Flask框架 之 路由和视图详解

    路由+视图 我们之前了解了路由系统是由带参数的装饰器完成的. 路由本质:装饰器和闭包实现的. 路由设置的两种方式 来看个例子. @app.route('/index') def index(): re ...

  5. Entity Framework 6.0 Tutorials(11):Download Sample Project

    Download Sample Project: Download a sample project for Entity Framework 6 Database-First model below ...

  6. Spring MVC 4.2 增加 CORS 支持

    转自:http://blog.csdn.net/z69183787/article/details/53102112 Spring MVC 4.2 增加 CORS 支持 跨站 HTTP 请求(Cros ...

  7. C#中对DataTable进行全连接后group by,orderby

    var result = from temp2 in                             (                                 from u in u ...

  8. [GO]指针和函数配合的值传递

    package main import "fmt" func swap(a, b int) { a, b = b, a fmt.Printf("a = %d, b = % ...

  9. ios7 设置status bar风格

    How to change status bar style during launch on iOS 7 up vote4down votefavorite   When I launch my a ...

  10. AD对象DirectoryEntry本地开发

    DirectoryEntry类如果需要在本地计算机开发需要满足以下条件: 1.本地计算机dns解析必须和AD域控制器的dns保持一致,如图: 2.必须模拟身份验证,才能操作查询AD用户 /// < ...