Contest Hunter 0601 Genius ACM
Advanced CPU Manufacturer (ACM) is one of the best CPU manufacturer in the world. Every day, they manufacture n CPU chips and sell them all over the world.
As you may know, each batch of CPU chips must pass a quality test by the QC department before they can be sold. The testing procedure is as follows:
1) Randomly pick m pairs of CPU chips from the batch of chips (If there are less than 2m CPU chips in the batch of chips, pick as many pairs as possible.)
2) For each pair, measure the Relative Performance Difference (RPD) between the two CPU chips. Let Di be the RPD of the i-th pair
3) Calculate the Sqared Performance Difference (SPD) of the batch according to the following formula:
SPD=∑Di2
If there are only 1 CPU in a batch, then the SPD of that batch is 0.
4) The batch of chips pass the test if and only if SPD≤k, where k is a preseted constant
Usually they send all the n CPU chips as a single batch to the QC department every day. As one of the best CPU manufacturer in the world, ACM never fail the test. However, with the continuous improvement of CPU performance, they find that they are at risk!
Of course they don't want to take any risks. So they make a decision to divide the n chips into several batches to ensure all of them pass the test. What’s more, each batch should be a continuous subsequence of their productions, otherwise the QC department will notice that they are cheating. Quality tests need time and money, so they want to minimize the number of batches.
Given the absolute performance of the n chips P1 ... Pn mesured by ACM in order of manufacture, your task is to determine the minimum number of batches to ensure that all chips pass the test. The RPD of two CPU chips equals to the difference of their absolute performance.
Input
The first line contains a single integer T, indicating the number of test cases.
In each test case, the first line contains three integers n, m, k. The second line contains n integers, P1 ... Pn.
T≤12
1≤n,m≤5×105
0≤k≤1018
0≤Pi≤220
Output
For each test case, print the answer in a single line.
Sample Input
2
5 1 49
8 2 1 7 9
5 1 64
8 2 1 7 9
Sample Output
2
1
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
//#include<queue>
//#include<set>
#define INF 0x3f3f3f3f
#define N 500005
#define re register
#define Ii inline int
#define Il inline long long
#define Iv inline void
#define Ib inline bool
#define Id inline double
#define ll long long
#define Fill(a,b) memset(a,b,sizeof(a))
#define R(a,b,c) for(register int a=b;a<=c;++a)
#define nR(a,b,c) for(register int a=b;a>=c;--a)
#define Min(a,b) ((a)<(b)?(a):(b))
#define Max(a,b) ((a)>(b)?(a):(b))
#define Cmin(a,b) ((a)=(a)<(b)?(a):(b))
#define Cmax(a,b) ((a)=(a)>(b)?(a):(b))
#define D_e(x) printf("\n&__ %d __&\n",x)
#define D_e_Line printf("-----------------\n")
#define D_e_Matrix for(re int i=1;i<=n;++i){for(re int j=1;j<=m;++j)printf("%d ",g[i][j]);putchar('\n');}
using namespace std;
Il read(){
ll s=,f=;char c;
for(c=getchar();c>''||c<'';c=getchar())if(c=='-')f=-;
while(c>=''&&c<='')s=s*+(c^''),c=getchar();
return s*f;
}
Iv print(int x){
if(x<)putchar('-'),x=-x;
if(x>)print(x/);
putchar(x%^'');
}
/*
Iv Count_Sort(int arr[]){
int k=0;
R(i,1,n)
++tot[arr[i]],Cmax(mx,a[i]);
R(j,0,mx)
while(tot[j])
arr[++k]=j,--tot[j];
}
Iv Merge_Sort(int arr[],int left,int right,int &sum){
if(left>=right)return;
int mid=left+right>>1;
Merge_Sort(arr,left,mid,sum),Merge_Sort(arr,mid+1,right,sum);
int i=left,j=mid+1,k=left;
while(i<=mid&&j<=right)
arr[i]<=arr[j]?
tmp[k++]=arr[i++]:
tmp[k++]=arr[j++],sum+=mid-i+1;//Sum Is Used To Count The Reverse Alignment
while(i<=mid)tmp[k++]=arr[i++];
while(j<=right)tmp[k++]=arr[j++];
R(i,left,right)arr[i]=tmp[i];
}
Iv Bucket_Sort(int arr[],int left,int right){
int mx=0;
R(i,left,right)
Cmax(mx,arr[i]),++tot[arr[i]];
++mx;
while(mx--)
while(tot[mx]--)
arr[right--]=mx;
}
*/
int n,m;
ll maximum,a[N],tmp[N],tmp_2[N];
Ib Jud(int l,int rp,int r){
ll sum=;
R(i,rp+,r)tmp[i]=a[i];
sort(tmp+rp+,tmp+r+);
merge(tmp+l,tmp+rp+,tmp+rp+,tmp+r+,tmp_2+l);
R(i,l,Min(l+r>>,m+l-)){
sum+=(tmp_2[i]-tmp_2[l+r-i])*(tmp_2[i]-tmp_2[l+r-i]);
if(sum>maximum)return ;
}
if(sum<=maximum){
R(i,l,r)
tmp[i]=tmp_2[i];
return ;
}
return ;
}
#define Outprint(x) print(x),putchar('\n')
int main(){
int Test=read();
while(Test--){
int ans=,l=;
n=read(),m=read(),maximum=read();
R(i,,n)
a[i]=read();
tmp[]=a[];
while(l<=n){
int r=l,mov=;//mov-> move step
while(mov)
(r+mov<=n&&Jud(l,r,r+mov))?
r+=mov,mov<<=:
mov>>=;
l=r+,++ans;
}
Outprint(ans);
}
return ;
}
Contest Hunter 0601 Genius ACM的更多相关文章
- CH0601 Genius ACM【倍增】【归并排序】
0601 Genius ACM 0x00「基本算法」例题 描述 给定一个整数 M,对于任意一个整数集合 S,定义“校验值”如下: 从集合 S 中取出 M 对数(即 2∗M 个数,不能重复使用集合中的数 ...
- hihocoder--1384 -- Genius ACM (倍增 归并)
题目链接 1384 -- Genius ACM 给定一个整数 m,对于任意一个整数集合 S,定义“校验值”如下:从集合 S 中取出 m 对数(即 2*M 个数,不能重复使用集合中的数,如果 S 中的整 ...
- Contest Hunter 3101
题目 Contest Hunter 3101 阶乘分解 原题传送门 题目分析 这里介绍一个本蒟蒻自己\(yy\)出来的方法. 我们发现,对于某一个单个的整数\(n\),若\(n\)能被某一个数\(x\ ...
- ACM-ICPC Beijing 2016 Genius ACM(倍增+二分)
描述 给定一个整数 M,对于任意一个整数集合 S,定义“校验值”如下: 从集合 S 中取出 M 对数(即 2∗M 个数,不能重复使用集合中的数,如果 S 中的整 数不够 M 对,则取到不能取为止),使 ...
- 【Contest Hunter【弱省胡策】Round #0-Flower Dance】组合数学+DP
题目链接: http://ch.ezoj.tk/contest/%E3%80%90%E5%BC%B1%E7%9C%81%E8%83%A1%E7%AD%96%E3%80%91Round%20%230/F ...
- [Contest Hunter#17-C] 舞动的夜晚
[题目链接] http://contest-hunter.org:83/contest/CH%20Round%20%2317/%E8%88%9E%E5%8A%A8%E7%9A%84%E5%A4%9C% ...
- hihoCoder#1384 : Genius ACM
对于一个固定的区间$[l,r]$,显然只要将里面的数字从小到大排序后将最小的$m$个和最大的$m$个配对即可. 如果固定左端点,那么随着右端点的右移,$SPD$值单调不降,所以尽量把右端点往右移,贪心 ...
- Contest Hunter Round #70 - 连续两大交易事件杯省选模拟赛
orz lydrainbowcat [Problem A]「艦これ市」70万幕后交易事件 排序机器=-=.重要的是相同的处理. 我们可以从小到大添加数字,然后维护一个位置的序列.每一种相等的数字都在一 ...
- 【Contest Hunter 5302】金字塔
[原题链接]传送门 [题解思路] 1.考虑如何将序列与树相对应,想到类似dfs序和欧拉序,同一个子树对应序列连续 2.暴力分子树过于复杂,考虑简化(划重点: 若当前区间为[l,r],考虑第一颗子树所在 ...
随机推荐
- 3-java中String值为空字符串与null的判断方法
java中String值为空字符串与null的判断方法 2018年01月21日 14:53:45 阅读数:1189 Java空字符串与null的区别 1.类型 null表示的是一个对象的值,而不是一个 ...
- 使用Python定时执行一任务,自动登录某web系统,生成报表,然后发送邮件给指定人员
一.项目需求 每周从A系统生成一张Excel报表,发送此报表给指定人员,相关人员依据此报表去完成后续的工作. 项目限制: 1.无法通过EDI系统交互的方式从后台读取数据 2.由于公司网络环境限制,不能 ...
- Apache htcacheclean命令
一.简介 htcacheclean可以用于将mod_disk_cache的磁盘缓冲区占用的空间保持在一个合理的水平.这个工具可以手动运行也可以作为后台守护进程运行.当作为守护进程运行的时候,它将每隔一 ...
- seconds
set_time_limit();//设置脚本运行时间为1秒
- VIVADO生成MCS
tcl console里面执行 write_cfgmem -format mcs -interface spix4 -size 128 -loadbit "up 0 E:/x.bit&quo ...
- 使用Adobe Illustrator + ArcGIS绘制地图 | Map Design Using ArcGIS + Adobe Illustrator
国内GIS/Cartography同行大部分使用CorelDraw绘制地图.相比之下,国外同行则更多使用Adobe Illustrator绘制地图.CorelDraw和Illustrator两个软件均 ...
- nagios+influxdb+grafana的监控数据可视化流程
nagios介绍 nagios是一款开源监控的应用,可用于监控本地和远程主机的日志.资源.死活等等诸多功能.通过snmp协议和nrpe协议. nagios的配置文件是由nconf上进行配置,然后点击生 ...
- javascript ie8兼容 a标签href javascript:void(0);
ie8兼容 a标签href javascript:void(0); 尽量不要用javascript:协议做为A的href属性,这样不仅会导致不必要的触发window.onbeforeunload事件;
- 团队内的沟通方式:网络 OR 当面
4月1日,我和老王稍微聊了聊关于互联网的工作方式,团队的成员不在一个地方,通过远程互联网的方式进行沟通是不是OK.现在确实有很多公司是有多地的分公司,子公司,不同的团队在不同的办公室中,甚至一个大团队 ...
- cinder create volume的流程(1)
前提:代码的跟踪,使用的是ocata版本 零.执行cinder create 命令,创建数据卷,打开debug开关 [root@osnode241001 ~]# cinder --debug crea ...