Genius ACM

Advanced CPU Manufacturer (ACM) is one of the best CPU manufacturer in the world. Every day, they manufacture n CPU chips and sell them all over the world.

As you may know, each batch of CPU chips must pass a quality test by the QC department before they can be sold. The testing procedure is as follows:

1) Randomly pick m pairs of CPU chips from the batch of chips (If there are less than 2m CPU chips in the batch of chips, pick as many pairs as possible.)

2) For each pair, measure the Relative Performance Difference (RPD) between the two CPU chips. Let Di be the RPD of the i-th pair

3) Calculate the Sqared Performance Difference (SPD) of the batch according to the following formula:

SPD=∑Di2

If there are only 1 CPU in a batch, then the SPD of that batch is 0.

4) The batch of chips pass the test if and only if SPD≤k, where k is a preseted constant

Usually they send all the n CPU chips as a single batch to the QC department every day. As one of the best CPU manufacturer in the world, ACM never fail the test. However, with the continuous improvement of CPU performance, they find that they are at risk!

Of course they don't want to take any risks. So they make a decision to divide the n chips into several batches to ensure all of them pass the test. What’s more, each batch should be a continuous subsequence of their productions, otherwise the QC department will notice that they are cheating. Quality tests need time and money, so they want to minimize the number of batches.

Given the absolute performance of the n chips P1 ... Pn mesured by ACM in order of manufacture, your task is to determine the minimum number of batches to ensure that all chips pass the test. The RPD of two CPU chips equals to the difference of their absolute performance.

Input

The first line contains a single integer T, indicating the number of test cases.

In each test case, the first line contains three integers n, m, k. The second line contains n integers, P1 ... Pn.

T≤12
1≤n,m≤5×105
0≤k≤1018
0≤Pi≤220

Output

For each test case, print the answer in a single line.

Sample Input

2
5 1 49
8 2 1 7 9
5 1 64
8 2 1 7 9

Sample Output

2
1
 #include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
//#include<queue>
//#include<set>
#define INF 0x3f3f3f3f
#define N 500005
#define re register
#define Ii inline int
#define Il inline long long
#define Iv inline void
#define Ib inline bool
#define Id inline double
#define ll long long
#define Fill(a,b) memset(a,b,sizeof(a))
#define R(a,b,c) for(register int a=b;a<=c;++a)
#define nR(a,b,c) for(register int a=b;a>=c;--a)
#define Min(a,b) ((a)<(b)?(a):(b))
#define Max(a,b) ((a)>(b)?(a):(b))
#define Cmin(a,b) ((a)=(a)<(b)?(a):(b))
#define Cmax(a,b) ((a)=(a)>(b)?(a):(b))
#define D_e(x) printf("\n&__ %d __&\n",x)
#define D_e_Line printf("-----------------\n")
#define D_e_Matrix for(re int i=1;i<=n;++i){for(re int j=1;j<=m;++j)printf("%d ",g[i][j]);putchar('\n');}
using namespace std;
Il read(){
ll s=,f=;char c;
for(c=getchar();c>''||c<'';c=getchar())if(c=='-')f=-;
while(c>=''&&c<='')s=s*+(c^''),c=getchar();
return s*f;
}
Iv print(int x){
if(x<)putchar('-'),x=-x;
if(x>)print(x/);
putchar(x%^'');
}
/*
Iv Count_Sort(int arr[]){
int k=0;
R(i,1,n)
++tot[arr[i]],Cmax(mx,a[i]);
R(j,0,mx)
while(tot[j])
arr[++k]=j,--tot[j];
}
Iv Merge_Sort(int arr[],int left,int right,int &sum){
if(left>=right)return;
int mid=left+right>>1;
Merge_Sort(arr,left,mid,sum),Merge_Sort(arr,mid+1,right,sum);
int i=left,j=mid+1,k=left;
while(i<=mid&&j<=right)
arr[i]<=arr[j]?
tmp[k++]=arr[i++]:
tmp[k++]=arr[j++],sum+=mid-i+1;//Sum Is Used To Count The Reverse Alignment
while(i<=mid)tmp[k++]=arr[i++];
while(j<=right)tmp[k++]=arr[j++];
R(i,left,right)arr[i]=tmp[i];
}
Iv Bucket_Sort(int arr[],int left,int right){
int mx=0;
R(i,left,right)
Cmax(mx,arr[i]),++tot[arr[i]];
++mx;
while(mx--)
while(tot[mx]--)
arr[right--]=mx;
}
*/
int n,m;
ll maximum,a[N],tmp[N],tmp_2[N];
Ib Jud(int l,int rp,int r){
ll sum=;
R(i,rp+,r)tmp[i]=a[i];
sort(tmp+rp+,tmp+r+);
merge(tmp+l,tmp+rp+,tmp+rp+,tmp+r+,tmp_2+l);
R(i,l,Min(l+r>>,m+l-)){
sum+=(tmp_2[i]-tmp_2[l+r-i])*(tmp_2[i]-tmp_2[l+r-i]);
if(sum>maximum)return ;
}
if(sum<=maximum){
R(i,l,r)
tmp[i]=tmp_2[i];
return ;
}
return ;
}
#define Outprint(x) print(x),putchar('\n')
int main(){
int Test=read();
while(Test--){
int ans=,l=;
n=read(),m=read(),maximum=read();
R(i,,n)
a[i]=read();
tmp[]=a[];
while(l<=n){
int r=l,mov=;//mov-> move step
while(mov)
(r+mov<=n&&Jud(l,r,r+mov))?
r+=mov,mov<<=:
mov>>=;
l=r+,++ans;
}
Outprint(ans);
}
return ;
}

Contest Hunter 0601 Genius ACM的更多相关文章

  1. CH0601 Genius ACM【倍增】【归并排序】

    0601 Genius ACM 0x00「基本算法」例题 描述 给定一个整数 M,对于任意一个整数集合 S,定义“校验值”如下: 从集合 S 中取出 M 对数(即 2∗M 个数,不能重复使用集合中的数 ...

  2. hihocoder--1384 -- Genius ACM (倍增 归并)

    题目链接 1384 -- Genius ACM 给定一个整数 m,对于任意一个整数集合 S,定义“校验值”如下:从集合 S 中取出 m 对数(即 2*M 个数,不能重复使用集合中的数,如果 S 中的整 ...

  3. Contest Hunter 3101

    题目 Contest Hunter 3101 阶乘分解 原题传送门 题目分析 这里介绍一个本蒟蒻自己\(yy\)出来的方法. 我们发现,对于某一个单个的整数\(n\),若\(n\)能被某一个数\(x\ ...

  4. ACM-ICPC Beijing 2016 Genius ACM(倍增+二分)

    描述 给定一个整数 M,对于任意一个整数集合 S,定义“校验值”如下: 从集合 S 中取出 M 对数(即 2∗M 个数,不能重复使用集合中的数,如果 S 中的整 数不够 M 对,则取到不能取为止),使 ...

  5. 【Contest Hunter【弱省胡策】Round #0-Flower Dance】组合数学+DP

    题目链接: http://ch.ezoj.tk/contest/%E3%80%90%E5%BC%B1%E7%9C%81%E8%83%A1%E7%AD%96%E3%80%91Round%20%230/F ...

  6. [Contest Hunter#17-C] 舞动的夜晚

    [题目链接] http://contest-hunter.org:83/contest/CH%20Round%20%2317/%E8%88%9E%E5%8A%A8%E7%9A%84%E5%A4%9C% ...

  7. hihoCoder#1384 : Genius ACM

    对于一个固定的区间$[l,r]$,显然只要将里面的数字从小到大排序后将最小的$m$个和最大的$m$个配对即可. 如果固定左端点,那么随着右端点的右移,$SPD$值单调不降,所以尽量把右端点往右移,贪心 ...

  8. Contest Hunter Round #70 - 连续两大交易事件杯省选模拟赛

    orz lydrainbowcat [Problem A]「艦これ市」70万幕后交易事件 排序机器=-=.重要的是相同的处理. 我们可以从小到大添加数字,然后维护一个位置的序列.每一种相等的数字都在一 ...

  9. 【Contest Hunter 5302】金字塔

    [原题链接]传送门 [题解思路] 1.考虑如何将序列与树相对应,想到类似dfs序和欧拉序,同一个子树对应序列连续 2.暴力分子树过于复杂,考虑简化(划重点: 若当前区间为[l,r],考虑第一颗子树所在 ...

随机推荐

  1. https://github.com/ildoonet/tf-pose-estimation

    https://github.com/ildoonet/tf-pose-estimation

  2. 启动dhcp出错:No subnet declaration for eth0 (192.168.0.1

    XUbuntu 8.04 i386.装了dhcp3-server.使用 sudo /etc/init.d/dhcp3-server start 出错:Apr 30 14:24:03 s dhcpd: ...

  3. 360 安全卫士 for Linux 使用结果

    测试了一把,结果显示360基本对Linux社区规范和安全常识不give a fuck. 胡乱打包 首先,这个deb包就是胡乱打包,依赖关系就没弄好: $ dpkg-deb -I 360safeforl ...

  4. Hyperledger Fabric Chaincode解析

    首先看下Blockchain结构,除了header指向下一个block的hash value外,block是由一组transaction构成, Transactions --> Blocks - ...

  5. ef增删改查

    [C#]Entity Framework 增删改查和事务操作 1.增加对象 DbEntity db = new DbEntity(); //创建对象实体,注意,这里需要对所有属性进行赋值(除了自动增长 ...

  6. 通过批处理操作注册表实现winform应用中Webbrowser以指定的IE版本加载网页

    通过批处理操作注册表实现winform应用中Webbrowser以指定的IE版本加载网页 rem 强制WebBrowser控件使用指定IE版本显示应用的网页 IF EXIST %windir%\Sys ...

  7. ios7适配--隐藏status bar

    //viewDidload if ([self respondsToSelector:@selector(setNeedsStatusBarAppearanceUpdate)]) { // iOS 7 ...

  8. 人脸识别 人工智能(AI)

    .. 如何通过AI实现 用我自己的数据集:能识别几张人脸.能否判断相似度.能否认出.

  9. MongoDB整理笔记のSharding分片

    这是一种将海量的数据水平扩展的数据库集群系统,数据分表存储在sharding 的各个节点上,使用者通过简单的配置就可以很方便地构建一个分布式MongoDB 集群.MongoDB 的数据分块称为 chu ...

  10. HTML5移动应用开发入门经典 中文pdf扫描版

    HTML5是关注度ZUI高的前沿Web技术,而移动互联网则是近两年ZUI炙手可热的Web领域.<HTML5移动应用开发入门经典>将这两者巧妙结合起来,详细讲解了如何利用HTML5进行移动应 ...