Genius ACM

Advanced CPU Manufacturer (ACM) is one of the best CPU manufacturer in the world. Every day, they manufacture n CPU chips and sell them all over the world.

As you may know, each batch of CPU chips must pass a quality test by the QC department before they can be sold. The testing procedure is as follows:

1) Randomly pick m pairs of CPU chips from the batch of chips (If there are less than 2m CPU chips in the batch of chips, pick as many pairs as possible.)

2) For each pair, measure the Relative Performance Difference (RPD) between the two CPU chips. Let Di be the RPD of the i-th pair

3) Calculate the Sqared Performance Difference (SPD) of the batch according to the following formula:

SPD=∑Di2

If there are only 1 CPU in a batch, then the SPD of that batch is 0.

4) The batch of chips pass the test if and only if SPD≤k, where k is a preseted constant

Usually they send all the n CPU chips as a single batch to the QC department every day. As one of the best CPU manufacturer in the world, ACM never fail the test. However, with the continuous improvement of CPU performance, they find that they are at risk!

Of course they don't want to take any risks. So they make a decision to divide the n chips into several batches to ensure all of them pass the test. What’s more, each batch should be a continuous subsequence of their productions, otherwise the QC department will notice that they are cheating. Quality tests need time and money, so they want to minimize the number of batches.

Given the absolute performance of the n chips P1 ... Pn mesured by ACM in order of manufacture, your task is to determine the minimum number of batches to ensure that all chips pass the test. The RPD of two CPU chips equals to the difference of their absolute performance.

Input

The first line contains a single integer T, indicating the number of test cases.

In each test case, the first line contains three integers n, m, k. The second line contains n integers, P1 ... Pn.

T≤12
1≤n,m≤5×105
0≤k≤1018
0≤Pi≤220

Output

For each test case, print the answer in a single line.

Sample Input

2
5 1 49
8 2 1 7 9
5 1 64
8 2 1 7 9

Sample Output

2
1
 #include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
//#include<queue>
//#include<set>
#define INF 0x3f3f3f3f
#define N 500005
#define re register
#define Ii inline int
#define Il inline long long
#define Iv inline void
#define Ib inline bool
#define Id inline double
#define ll long long
#define Fill(a,b) memset(a,b,sizeof(a))
#define R(a,b,c) for(register int a=b;a<=c;++a)
#define nR(a,b,c) for(register int a=b;a>=c;--a)
#define Min(a,b) ((a)<(b)?(a):(b))
#define Max(a,b) ((a)>(b)?(a):(b))
#define Cmin(a,b) ((a)=(a)<(b)?(a):(b))
#define Cmax(a,b) ((a)=(a)>(b)?(a):(b))
#define D_e(x) printf("\n&__ %d __&\n",x)
#define D_e_Line printf("-----------------\n")
#define D_e_Matrix for(re int i=1;i<=n;++i){for(re int j=1;j<=m;++j)printf("%d ",g[i][j]);putchar('\n');}
using namespace std;
Il read(){
ll s=,f=;char c;
for(c=getchar();c>''||c<'';c=getchar())if(c=='-')f=-;
while(c>=''&&c<='')s=s*+(c^''),c=getchar();
return s*f;
}
Iv print(int x){
if(x<)putchar('-'),x=-x;
if(x>)print(x/);
putchar(x%^'');
}
/*
Iv Count_Sort(int arr[]){
int k=0;
R(i,1,n)
++tot[arr[i]],Cmax(mx,a[i]);
R(j,0,mx)
while(tot[j])
arr[++k]=j,--tot[j];
}
Iv Merge_Sort(int arr[],int left,int right,int &sum){
if(left>=right)return;
int mid=left+right>>1;
Merge_Sort(arr,left,mid,sum),Merge_Sort(arr,mid+1,right,sum);
int i=left,j=mid+1,k=left;
while(i<=mid&&j<=right)
arr[i]<=arr[j]?
tmp[k++]=arr[i++]:
tmp[k++]=arr[j++],sum+=mid-i+1;//Sum Is Used To Count The Reverse Alignment
while(i<=mid)tmp[k++]=arr[i++];
while(j<=right)tmp[k++]=arr[j++];
R(i,left,right)arr[i]=tmp[i];
}
Iv Bucket_Sort(int arr[],int left,int right){
int mx=0;
R(i,left,right)
Cmax(mx,arr[i]),++tot[arr[i]];
++mx;
while(mx--)
while(tot[mx]--)
arr[right--]=mx;
}
*/
int n,m;
ll maximum,a[N],tmp[N],tmp_2[N];
Ib Jud(int l,int rp,int r){
ll sum=;
R(i,rp+,r)tmp[i]=a[i];
sort(tmp+rp+,tmp+r+);
merge(tmp+l,tmp+rp+,tmp+rp+,tmp+r+,tmp_2+l);
R(i,l,Min(l+r>>,m+l-)){
sum+=(tmp_2[i]-tmp_2[l+r-i])*(tmp_2[i]-tmp_2[l+r-i]);
if(sum>maximum)return ;
}
if(sum<=maximum){
R(i,l,r)
tmp[i]=tmp_2[i];
return ;
}
return ;
}
#define Outprint(x) print(x),putchar('\n')
int main(){
int Test=read();
while(Test--){
int ans=,l=;
n=read(),m=read(),maximum=read();
R(i,,n)
a[i]=read();
tmp[]=a[];
while(l<=n){
int r=l,mov=;//mov-> move step
while(mov)
(r+mov<=n&&Jud(l,r,r+mov))?
r+=mov,mov<<=:
mov>>=;
l=r+,++ans;
}
Outprint(ans);
}
return ;
}

Contest Hunter 0601 Genius ACM的更多相关文章

  1. CH0601 Genius ACM【倍增】【归并排序】

    0601 Genius ACM 0x00「基本算法」例题 描述 给定一个整数 M,对于任意一个整数集合 S,定义“校验值”如下: 从集合 S 中取出 M 对数(即 2∗M 个数,不能重复使用集合中的数 ...

  2. hihocoder--1384 -- Genius ACM (倍增 归并)

    题目链接 1384 -- Genius ACM 给定一个整数 m,对于任意一个整数集合 S,定义“校验值”如下:从集合 S 中取出 m 对数(即 2*M 个数,不能重复使用集合中的数,如果 S 中的整 ...

  3. Contest Hunter 3101

    题目 Contest Hunter 3101 阶乘分解 原题传送门 题目分析 这里介绍一个本蒟蒻自己\(yy\)出来的方法. 我们发现,对于某一个单个的整数\(n\),若\(n\)能被某一个数\(x\ ...

  4. ACM-ICPC Beijing 2016 Genius ACM(倍增+二分)

    描述 给定一个整数 M,对于任意一个整数集合 S,定义“校验值”如下: 从集合 S 中取出 M 对数(即 2∗M 个数,不能重复使用集合中的数,如果 S 中的整 数不够 M 对,则取到不能取为止),使 ...

  5. 【Contest Hunter【弱省胡策】Round #0-Flower Dance】组合数学+DP

    题目链接: http://ch.ezoj.tk/contest/%E3%80%90%E5%BC%B1%E7%9C%81%E8%83%A1%E7%AD%96%E3%80%91Round%20%230/F ...

  6. [Contest Hunter#17-C] 舞动的夜晚

    [题目链接] http://contest-hunter.org:83/contest/CH%20Round%20%2317/%E8%88%9E%E5%8A%A8%E7%9A%84%E5%A4%9C% ...

  7. hihoCoder#1384 : Genius ACM

    对于一个固定的区间$[l,r]$,显然只要将里面的数字从小到大排序后将最小的$m$个和最大的$m$个配对即可. 如果固定左端点,那么随着右端点的右移,$SPD$值单调不降,所以尽量把右端点往右移,贪心 ...

  8. Contest Hunter Round #70 - 连续两大交易事件杯省选模拟赛

    orz lydrainbowcat [Problem A]「艦これ市」70万幕后交易事件 排序机器=-=.重要的是相同的处理. 我们可以从小到大添加数字,然后维护一个位置的序列.每一种相等的数字都在一 ...

  9. 【Contest Hunter 5302】金字塔

    [原题链接]传送门 [题解思路] 1.考虑如何将序列与树相对应,想到类似dfs序和欧拉序,同一个子树对应序列连续 2.暴力分子树过于复杂,考虑简化(划重点: 若当前区间为[l,r],考虑第一颗子树所在 ...

随机推荐

  1. selenium2 断言失败自动截图 (四)

    一般web应用程序出错过后,会抛出异常.这个时候能截个图下来,当然是极好的. selenium自带了截图功能. //获取截图file File scrFile= ((TakesScreenshot)d ...

  2. 在Ubuntu16.04上使用rz上传文件,XXX was skipped

    原本想把hadoop-2.8.5.tar.gz上传到/usr/local/src文件夹下,报错,was skipped 如下图: 换个文件夹位置,更换到本用户文件夹下,可以上传,说明是对文件夹操作权限 ...

  3. The 'Microsoft Jet OLEDB 4.0 Provider' is not registered on the local machine

    在一台Win7 64位的操纵系统上部署的C# Web系统,操作Excel,批量导入数据,报错,提示错误信息: The ‘Microsoft Jet OLEDB 4.0 Provider' is not ...

  4. while循环 for循环的理解

    不管是while循环还是for循环都隐含着一个if else的结构,就是说,if 条件满足,那么就执行循环体内部的语句,else就做循环体外部的事情. 有一个例子我觉得特别典型,程序内部定义了一个特定 ...

  5. linux下配置eclipse环境

    注明:本文为博主原创文章,转载请注明出处 前期准备 (此文使用的是非安装版jdk1.8,你也可以下载版本更低的,而且建议使用1.6版本,66大顺嘛,嘻嘻) 1.点击下载jdk 2.点击下载eclips ...

  6. CentOS 安装mongodb3.0 二进制包

    1.下载mongodb因为64位系统CentOS,所以下载64位的安装包: wget https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-3.0 ...

  7. 权限管理RBAC

    四张表: 1.module:id/name //模块 2.action:id /module_id/name //权限 3.user:id/name //用户表 4.group:id/user_id ...

  8. 申请参加腾讯云自媒体分享计划,送代金券+CN域名

    文章介绍 看到腾讯支持博客了,就尝试下,看看效果如何. 文章属于转载,文末有文章来源,转载注明出处. 活动规则 活动资格:面向腾讯云官网已注册且完成实名认证用户,除协作者之外,其余用户均可参与; 如何 ...

  9. <%@ include > 与< jsp:include >

    include指令表示在JSP编译时插入一个包含文本或者代码的文件,把文件中的文本静态地包含过去.也就是说,会把被包含的页面拷贝到包含的页面中指令所在的位置. 语法格式:<%@ include ...

  10. delphi 金额大小写转换函数

    {*------------------------------------------------ 金额大小写转换函数 @author 王云盼 @version V1506.01 在delphi7测 ...