小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略
原题
Given an integer array nums
, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Example:
Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Follow up:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
讲解
动态规划
视频@ 哔哩哔哩 动态规划 or YouTube 动态规划
通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。
动态规划的性质
- 最优子结构(optimal sub-structure):如果问题的最优解所包含的子问题的解也是最优的,我们就称该问题具有最优子结构性质(即满足最优化原理)。最优子结构性质为动态规划算法解决问题提供了重要线索。
- 重叠子问题(overlapping sub-problem):动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只计算一次,然后将其计算结果保存在一个表格中,当再次需要计算已经计算过的子问题时,只是在表格中简单地查看一下结果,从而获得较高的效率。
状态转移方程
dp[i] = max(nums[i], nums[i] + dp[i - 1])
解释
- i代表数组中的第i个元素的位置
- dp[i]代表从0到i闭区间内,所有包含第i个元素的连续子数组中,总和最大的值
nums = [-2,1,-3,4,-1,2,1,-5,4]
dp = [-2, 1, -2, 4, 3, 5, 6, 1, 5]
时间复杂度
O(n)
参考
代码(C++)
class Solution {
public:
int maxSubArray(vector<int>& nums) {
// boundary
if (nums.size() == ) return ; // delares
vector<int> dp(nums.size(), );
dp[] = nums[];
int max = dp[]; // loop
for (int i = ; i < nums.size(); ++i) {
dp[i] = nums[i] > nums[i] + dp[i - ] ? nums[i] : nums[i] + dp[i - ];
if (max < dp[i]) max = dp[i];
} return max;
}
};
分治策略
视频@ 哔哩哔哩 分治策略 or YouTube 分治策略
分治算法是一个解决复杂问题的好工具,它可以把问题分解成若干个子问题,把子问题逐个解决,再组合到一起形成大问题的答案。
这个技巧是很多高效算法的基础,如排序算法(快速排序、归并排序)
实现方式
循环递归
在每一层递归上都有三个步骤:
- 分解:将原问题分解为若干个规模较小,相对独立,与原问题形式相同的子问题。
- 解决:若子问题规模较小且易于解决 时,则直接解。否则,递归地解决各子问题。
- 合并:将各子问题的解合并为原问题的解。
注意事项
- 边界条件,即求解问题的最小规模的判定
示意图
递归关系式
T(n) = 2T(n/2) + n
可以利用递归树的方式求解其时间复杂度(其求解过程在《算法导论》中文第三版 P51有讲解)
时间复杂度
O(nlgn)
代码(C++)
class Solution {
public:
int maxSubArray(vector<int>& nums) {
return find(nums, 0, nums.size() - 1);
} int find(vector<int>& nums, int start, int end) {
// boundary
if (start == end) {
return nums[start];
}
if (start > end) {
return INT_MIN;
} // delcare
int left_max = 0, right_max = 0, ml = 0, mr = 0;
int middle = (start + end) / 2; // find
left_max = find(nums, start, middle - 1);
right_max = find(nums, middle + 1, end);
// middle
// to left
for (int i = middle - 1, sum = 0; i >= start; --i) {
sum += nums[i];
if (ml < sum) ml = sum;
}
// to right
for (int i = middle + 1, sum = 0; i <= end; ++i) {
sum += nums[i];
if (mr < sum) mr = sum;
} // return
return max(max(left_max, right_max), ml + mr + nums[middle]);
}
};
原题:https://leetcode.com/problems/maximum-subarray
文章来源:胡小旭 => 小旭讲解 LeetCode 53. Maximum Subarray
小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略的更多相关文章
- [array] leetcode - 53. Maximum Subarray - Easy
leetcode - 53. Maximum Subarray - Easy descrition Find the contiguous subarray within an array (cont ...
- Leetcode#53.Maximum Subarray(最大子序和)
题目描述 给定一个序列(至少含有 1 个数),从该序列中寻找一个连续的子序列,使得子序列的和最大. 例如,给定序列 [-2,1,-3,4,-1,2,1,-5,4], 连续子序列 [4,-1,2,1] ...
- LN : leetcode 53 Maximum Subarray
lc 53 Maximum Subarray 53 Maximum Subarray Find the contiguous subarray within an array (containing ...
- leetcode 53. Maximum Subarray 、152. Maximum Product Subarray
53. Maximum Subarray 之前的值小于0就不加了.dp[i]表示以i结尾当前的最大和,所以需要用一个变量保存最大值. 动态规划的方法: class Solution { public: ...
- 41. leetcode 53. Maximum Subarray
53. Maximum Subarray Find the contiguous subarray within an array (containing at least one number) w ...
- LeetCode 53. Maximum Subarray(最大的子数组)
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
- leetCode 53.Maximum Subarray (子数组的最大和) 解题思路方法
Maximum Subarray Find the contiguous subarray within an array (containing at least one number) whic ...
- [LeetCode] 53. Maximum Subarray 最大子数组 --动态规划+分治
Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...
- [LeetCode] 53. Maximum Subarray 最大子数组
Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...
随机推荐
- input上传图片并显示
html: <div id="click"><img> </div><!--照片预览的div --> <div class=& ...
- Hibernate学习第一天
Hibernate框架第一天 今天任务 1. 使用Hibernate框架完成对客户的增删改查的操作 教学导航 1. 能够说出Hibernate的执行流程 2. 能够独立使用Hibernate框架完成增 ...
- RL 编、解码(EncodedString、DecodedString) - iOS
开发中对文本传输或二进制传输,都需要将传输的对象进行二进制字节的转化操作,所以无异于编.解码便会经常用到的操作; 当然除了这种方式之外,还有一种常用的 Base64,此文中不具体细谈, Base64 ...
- c# 调用服务返回结果模板化
一般我们返回一个结果,主要有返回值,执行结果信息,所以定义一个类 public class QuestResult { /// <summary> /// 返回值 ...
- JavaScript-语法专题
一.数据类型的转换 概述 JavaScript是一种动态语言,变量没有类型限制,可以随时赋予任意值 强制转换:主要是值Number(),String(),Boolean三个函数 Number函数,可以 ...
- 『ACM C++』HDU杭电OJ | 1425 - sort (排序函数的特殊应用)
今天真的是累哭了,周一课从早八点半一直上到晚九点半,整个人要虚脱的感觉,因为时间不太够鸭所以就回头看看找了一些比较有知识点的题来总结总结分析一下,明天有空了就开始继续打题,嘻嘻嘻. 今日兴趣电影: & ...
- 【转载】Git忽略规则和.gitignore规则不生效的解决办法
原文:https://www.cnblogs.com/zhangxiaoliu/p/6008038.html Git忽略规则: 在git中如果想忽略掉某个文件,不让这个文件提交到版本库中,可以使用修改 ...
- CentOS7 minimal 没有netstat命令
在CentOS 7 minimal中使用netstat 时,发现显示如下,明显没有了netstat 命令 [root@localhost ~]# netstat -a -bash: netstat: ...
- thinkphp 下多图ajax上传图片
碰到一个项目,有一个比较繁琐的功能6个ajax上传,基本上每个上传逻辑多不一样,记录一下 thinkphp的view页面: id方便找到这个元素 name一定要加 [ ] <div class= ...
- JSP/Servlet开发——第五章 使用分层实现业务处理
1.JNDI(Java Naming and Directory Interface)Java命名和目录接口: ●JNDI:是一个有关应用序设计的 API 为开发人员提供了查找和访问各种命名和目录服务 ...