1、逻辑函数

假设数据集有n个独立的特征,x1到xn为样本的n个特征。常规的回归算法的目标是拟合出一个多项式函数,使得预测值与真实值的误差最小:

而我们希望这样的f(x)能够具有很好的逻辑判断性质,最好是能够直接表达具有特征x的样本被分到某类的概率。比如f(x)>0.5的时候能够表示x被分为正类,f(x)<0.5表示分为反类。而且我们希望f(x)总在[0, 1]之间。有这样的函数吗?

sigmoid函数就出现了。这个函数的定义如下:

先直观的了解一下,sigmoid函数的图像如下所示(来自http://computing.dcu.ie/~humphrys/Notes/Neural/sigmoid.html):

sigmoid函数具有我们需要的一切优美特性,其定义域在全体实数,值域在[0, 1]之间,并且在0点值为0.5。

那么,如何将f(x)转变为sigmoid函数呢?令p(x)=1为具有特征x的样本被分到类别1的概率,则p(x)/[1-p(x)]被定义为让步比(odds ratio)。引入对数:

上式很容易就能把p(x)解出来得到下式:

现在,我们得到了需要的sigmoid函数。接下来只需要和往常的线性回归一样,拟合出该式中n个参数c即可。

2、测试数据

测试数据我们仍然选择康奈尔大学网站的2M影评数据集。

在这个数据集上我们已经测试过KNN分类算法、朴素贝叶斯分类算法。现在我们看看罗辑回归分类算法在处理此类情感分类问题效果如何。

同样的,我们直接读入保存好的movie_data.npy和movie_target.npy以节省时间。

3、代码与分析

逻辑回归的代码如下:

  1. # -*- coding: utf-8 -*-
  2. from matplotlib import pyplot
  3. import scipy as sp
  4. import numpy as np
  5. from matplotlib import pylab
  6. from sklearn.datasets import load_files
  7. from sklearn.cross_validation import train_test_split
  8. from sklearn.feature_extraction.text import  CountVectorizer
  9. from sklearn.feature_extraction.text import  TfidfVectorizer
  10. from sklearn.naive_bayes import MultinomialNB
  11. from sklearn.metrics import precision_recall_curve, roc_curve, auc
  12. from sklearn.metrics import classification_report
  13. from sklearn.linear_model import LogisticRegression
  14. import time
  15. start_time = time.time()
  16. #绘制R/P曲线
  17. def plot_pr(auc_score, precision, recall, label=None):
  18. pylab.figure(num=None, figsize=(6, 5))
  19. pylab.xlim([0.0, 1.0])
  20. pylab.ylim([0.0, 1.0])
  21. pylab.xlabel('Recall')
  22. pylab.ylabel('Precision')
  23. pylab.title('P/R (AUC=%0.2f) / %s' % (auc_score, label))
  24. pylab.fill_between(recall, precision, alpha=0.5)
  25. pylab.grid(True, linestyle='-', color='0.75')
  26. pylab.plot(recall, precision, lw=1)
  27. pylab.show()
  28. #读取
  29. movie_data   = sp.load('movie_data.npy')
  30. movie_target = sp.load('movie_target.npy')
  31. x = movie_data
  32. y = movie_target
  33. #BOOL型特征下的向量空间模型,注意,测试样本调用的是transform接口
  34. count_vec = TfidfVectorizer(binary = False, decode_error = 'ignore',\
  35. stop_words = 'english')
  36. average = 0
  37. testNum = 10
  38. for i in range(0, testNum):
  39. #加载数据集,切分数据集80%训练,20%测试
  40. x_train, x_test, y_train, y_test\
  41. = train_test_split(movie_data, movie_target, test_size = 0.2)
  42. x_train = count_vec.fit_transform(x_train)
  43. x_test  = count_vec.transform(x_test)
  44. #训练LR分类器
  45. clf = LogisticRegression()
  46. clf.fit(x_train, y_train)
  47. y_pred = clf.predict(x_test)
  48. p = np.mean(y_pred == y_test)
  49. print(p)
  50. average += p
  51. #准确率与召回率
  52. answer = clf.predict_proba(x_test)[:,1]
  53. precision, recall, thresholds = precision_recall_curve(y_test, answer)
  54. report = answer > 0.5
  55. print(classification_report(y_test, report, target_names = ['neg', 'pos']))
  56. print("average precision:", average/testNum)
  57. print("time spent:", time.time() - start_time)
  58. plot_pr(0.5, precision, recall, "pos")

代码运行结果如下:

0.8
0.817857142857
0.775
0.825
0.807142857143
0.789285714286
0.839285714286
0.846428571429
0.764285714286
0.771428571429
               precision    recall  f1-score   support
        neg       0.74      0.80      0.77       132
        pos       0.81      0.74      0.77       148
avg / total     0.77      0.77      0.77       280
average precision: 0.803571428571
time spent: 9.651551961898804

首先注意我们连续测试了10组测试样本,最后统计出准确率的平均值。另外一种好的测试方法是K折交叉检验(K-Fold)。这样都能更加准确的评估分类器的性能,考察分类器对噪音的敏感性。

其次我们注意看最后的图,这张图就是使用precision_recall_curve绘制出来的P/R曲线(precition/Recall)。结合P/R图,我们能对逻辑回归有更进一步的理解。

前文我们说过,通常我们使用0.5来做划分两类的依据。而结合P/R分析,阈值的选取是可以更加灵活和优秀的。

在上图可以看到,如果选择的阈值过低,那么更多的测试样本都将分为1类。因此召回率能够得到提升,显然准确率牺牲相应准确率。

比如本例中,或许我会选择0.42作为划分值——因为该点的准确率和召回率都很高。

转至:http://blog.csdn.net/lsldd/article/details/41551797

python机器学习-逻辑回归的更多相关文章

  1. 吴裕雄 python 机器学习——逻辑回归

    import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot ...

  2. python机器学习——逻辑回归

    我们知道感知器算法对于不能完全线性分割的数据是无能为力的,在这一篇将会介绍另一种非常有效的二分类模型--逻辑回归.在分类任务中,它被广泛使用 逻辑回归是一个分类模型,在实现之前我们先介绍几个概念: 几 ...

  3. 机器学习_线性回归和逻辑回归_案例实战:Python实现逻辑回归与梯度下降策略_项目实战:使用逻辑回归判断信用卡欺诈检测

    线性回归: 注:为偏置项,这一项的x的值假设为[1,1,1,1,1....] 注:为使似然函数越大,则需要最小二乘法函数越小越好 线性回归中为什么选用平方和作为误差函数?假设模型结果与测量值 误差满足 ...

  4. 机器学习---逻辑回归(二)(Machine Learning Logistic Regression II)

    在<机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)>一文中,我们讨论了如何用逻辑回归解决二分类问题以及逻辑回归算法的本质.现在 ...

  5. 机器学习/逻辑回归(logistic regression)/--附python代码

    个人分类: 机器学习 本文为吴恩达<机器学习>课程的读书笔记,并用python实现. 前一篇讲了线性回归,这一篇讲逻辑回归,有了上一篇的基础,这一篇的内容会显得比较简单. 逻辑回归(log ...

  6. 机器学习之使用Python完成逻辑回归

    一.任务基础 我们将建立一个逻辑回归模型来预测一个学生是否被大学录取.假设你是一个大学系的管理员,你想根据两次考试的结果来决定每个申请人的录取机会.你有以前的申请人的历史数据,你可以用它作为逻辑回归的 ...

  7. 机器学习——逻辑回归(Logistic Regression)

    1 前言 虽然该机器学习算法名字里面有"回归",但是它其实是个分类算法.取名逻辑回归主要是因为是从线性回归转变而来的. logistic回归,又叫对数几率回归. 2 回归模型 2. ...

  8. python机器学习《回归 一》

    唠嗑唠嗑 依旧是每一次随便讲两句生活小事.表示最近有点懒,可能是快要考试的原因,外加这两天都有笔试和各种面试,让心情变得没那么安静的敲代码,没那么安静的学习算法.搞得第一次和技术总监聊天的时候都不太懂 ...

  9. 机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)

    逻辑回归(Logistic Regression)是一种经典的线性分类算法.逻辑回归虽然叫回归,但是其模型是用来分类的. 让我们先从最简单的二分类问题开始.给定特征向量x=([x1,x2,...,xn ...

随机推荐

  1. MySql 分页关键字(limit)

    mysql分页关键字: limit m,n --m:表示从哪一行开始查,n:查询多少条 oracle分页关键字:: rownum SqlServer:top(2005以下版本)  row_number ...

  2. HDU 2586.How far away ?-离线LCA(Tarjan)

    2586.How far away ? 这个题以前写过在线LCA(ST)的,HDU2586.How far away ?-在线LCA(ST) 现在贴一个离线Tarjan版的 代码: //A-HDU25 ...

  3. HDU 2824.The Euler function-筛选法求欧拉函数

    欧拉函数: φ(n)=n*(1-1/p1)(1-1/p2)....(1-1/pk),其中p1.p2…pk为n的所有素因子.比如:φ(12)=12*(1-1/2)(1-1/3)=4.可以用类似求素数的筛 ...

  4. Codeforces #442 Div2 E

    #442 Div2 E 题意 给你一棵树,每个结点有开关(0表示关闭,1表示开启),两种操作: 反转一棵子树所有开关 询问一棵子树有多少开关是开着的 分析 先 DFS 把树上的结点映射到区间上,然后就 ...

  5. MySQL笔记之视图的使用详解

    原文:http://www.jb51.net/article/36363.htm 1.什么是视图 视图是从一个或多个表中导出来的表,是一种虚拟存在的表. 视图就像一个窗口,通过这个窗口可以看到系统专门 ...

  6. Servlet 3.1 规范

    在线版目录 Servlet3.1规范翻译——前言 Servlet3.1规范翻译——概览 Servlet3.1规范翻译——Servlet Context Servlet3.1规范翻译——Response ...

  7. CodeForces - 981D Bookshelves

    Discription Mr Keks is a typical white-collar in Byteland. He has a bookshelf in his office with som ...

  8. java 获取系统信息及CPU的使用率(转)

    java 获取系统信息及CPU的使用率 原文:http://kakaluyi.javaeye.com/blog/211492 最近做个项目,就是要取得cpu占有率等等的系统信息,一开始以为要用动态链接 ...

  9. 关于GIT的一些注意点

    往空仓库提交代码之前先将文档区的_gitignore放到项目根目录然后改名成.gitignore然后git add .gitignore以上的目的是忽略一些不应该提交GIT的文件,多人编辑工程的时候不 ...

  10. 【spring data jpa】jpa实现update操作 字段有值就更新,没值就用原来的

    示例代码如下: /** *复杂JPA操作 使用@Query()自定义sql语句 根据业务id UId去更新整个实体 * 删除和更新操作,需要@Modifying和@Transactional注解的支持 ...